МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «красноярский государственный педагогический университет им. В.П. Астафьева»

Институт/факультет/департамент <u>Факультет биологии, географии и химии</u> Кафедра-разработчик Кафедра биологии, химии и методики обучения

УТВЕРЖДЕНО на заседании кафедры Протокол № 9 от «07» мая 2025 г. Заведующий кафедрой Е.М. Антипова

ОДОБРЕНО
На заседании научно-методического совета специальности (направления подготовки)
Протокол № 5
От «14» мая 2025 г.
Председатель НМСС (Н)
Н.М. Горленко

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Органический синтез»

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) Направленность (профиль) образовательной программы Биология и химия Квалификация бакалавр

Составитель: Ромашкова Ю.Г.

1. Назначение фонда оценочных средств

- 1.1. **Целью** создания ФОС по дисциплине «Органический синтез» является установление соответствия учебных достижений запланированным результатам обучения и требованиям рабочей программы дисциплины.
 - 1.2. ФОС разработан на основании нормативных документов:
- федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки)
 (уровень бакалавриата), утвержденным приказом Министерством образования и науки
 Российской федерации от 9 февраля 2016 г. № 91;
- образовательной программы «Биология и химии», очной формы обучения высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки);
- Положения о формировании фонда оценочных средств для текущего контроля успеваемости, промежуточной и итоговой аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры, программам подготовки научно-педагогических кадров в аспирантуре в федеральном государственном бюджетном образовательном учреждении высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева» утвержденного приказом ректора № 297 (п) от 28.04.2018.

2. Перечень компетенций, подлежащих формированию в рамках дисциплины.

2.1. Перечень компетенций, формируемых в процессе изучения дисциплины <u>«Органический</u> синтез»:

- ПК-1: Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач;
 - о ПК-1.1: Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета)
 - о ПК-1.2: Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО
 - о ПК-1.3: Демонстрирует умение разрабатывать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные

3. Фонд оценочных средств для промежуточной аттестации

- 3.1. Фонды оценочных средств включают: зачет.
 - оценочное средство 1 вопросы к зачету.
- 3.2. Оценочные средства
- 3.2.1. Оценочное средство: вопросы к зачету.

Критерии оценивания по оценочному средству 1

Форми	Продвинутый уровень	Базовый уровень	Пороговый уровень
руемые	сформированности	сформированности	сформированности
компет	компетенций	компетенций	компетенций
енции	(87-100 баллов)	(73-86 баллов)	(60-72 балла)*
	отлично/зачтено	хорошо/зачтено	удовлетворительно/зачте
			НО
ПК-1.1	Обучающийся на	Обучающийся на	Обучающийся на
	продвинутом уровне	базовом уровне знает	пороговом уровне знает
	знает структуру, состав и	структуру, состав и	структуру, состав и
	дидактические единицы	дидактические единицы	дидактические единицы
	предметной области	предметной области	предметной области
	(преподаваемого	(преподаваемого	(преподаваемого
	предмета)	предмета)	предмета)
ПК-1.2	Обучающийся на	Обучающийся на	Обучающийся на
	продвинутом уровне	базовом уровне умеет	пороговом уровне умеет
	умеет осуществлять	осуществлять отбор	осуществлять отбор
	отбор учебного	учебного содержания	учебного содержания
	содержания для его	для его реализации в	для его реализации в
	реализации в различных	различных формах	различных формах
	формах обучения в	обучения в соответствии	обучения в соответствии
	соответствии с	с требованиями ФГОС	с требованиями ФГОС
	требованиями ФГОС ОО	00	00
ПК-1.3	Обучающийся на	Обучающийся на	Обучающийся на
	продвинутом уровне	базовом уровне	пороговом уровне
	демонстрирует умение	демонстрирует умение	демонстрирует умение
	разрабатывать	разрабатывать	разрабатывать
	различные формы	различные формы	различные формы
	учебных занятий,	учебных занятий,	учебных занятий,
	применять методы,	применять методы,	применять методы,
	приемы и технологии	приемы и технологии	приемы и технологии
	обучения, в том числе	обучения, в том числе	обучения, в том числе
	информационные	информационные	информационные

4. Фонд оценочных средств для текущего контроля успеваемости

- 4.1. Фонды оценочных средств включают:
 - оценочное средство 2 входной контроль (тестирование),
 - оценочное средство 3 составление конспектов лекций по темам,
 - оценочное средство 4 отчеты по лабораторным работам,
 - оценочное средство 5 индивидуальное домашнее задание №1,
 - оценочное средство 6 индивидуальное домашнее задание №2,
 - оценочное средство 7 письменная контрольная работа №1,
 - оценочное средство 8 письменная контрольная работа №2,
 - оценочное средство 9 написание реферата.

4.2. Критерии оценивания

4.2.1. Критерии оценивания см. в технологической карте рейтинга по дисциплине «Органический синтез».

4.2.2. Критерии оценивания по оценочному средству 2 – входной контроль (тестирование).

Критерии оценивания	Количество баллов (вклад в рейтинг)
Верных ответов – 3	1
Верных ответов – 6	2
Верных ответов – 9	3
Верных ответов – 12	4
Верных ответов – 15 (максимальный балл)	5

4.2.3. Критерии оценивания по оценочному средству <u>3 – составление конспектов лекций по</u> темам.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Раскрыты основные понятия по теме	4
Показаны связи между основными понятиями	3
Использование схем и условных обозначений	3
Аккуратность, грамотность, лаконичность	2
Максимальный балл	10

4.2.4. Критерии оценивания по оценочному средству 4 – отчеты по лабораторным работам.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Выполнение работы согласно инструкции	2
Оформление согласно требованиям плана	2
Получение результатов, соответствующих цели работы	1
Самостоятельное формулирование вывода	1
Максимальный балл	6

4.2.5. Критерии оценивания по оценочному средству <u>5 – индивидуальное домашнее задание</u> №1.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждую верно решенную задачу	1
Максимальный балл (за 6 задач)	6

4.2.6. Критерии оценивания по оценочному средству <u>6 – индивидуальное домашнее задание</u> №2.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 6 заданий)	6

4.2.7. Критерии оценивания по оценочному средству <u>7 – письменная контрольная работа №1.</u>

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	2
Максимальный балл (за 4 задания)	8

4.2.8. Критерии оценивания по оценочному средству 8 – письменная контрольная работа №2.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 10 заданий)	10

4.2.9. Критерии оценивания по оценочному средству 9 – написание реферата.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Раскрыто содержание темы реферата	3
Глубина и охват литературы по теме реферата	2
Показана актуальность темы, наличие введения и заключения, содержащего выводы по проделанной работе	3
• • • • • • • • • • • • • • • • • • • •	
Аккуратность, грамотность, лаконичность	2
Максимальный балл	10

5. Оценочные средства (контрольно-измерительные материалы)

5.1. Оценочные средства для промежуточной аттестации

5.1.1. Типовые вопросы к зачету (оценочное средство №1)

- 1. История возникновения и развития органического синтеза.
- 2. Основные этапы химического синтеза.
- 3. Планирование синтеза: а) от исходного соединения к целевому (синтетическое планирование), б) от целевого соединения к исходному (ретросинтетическое планирование).
- 4. Ретросинтетический анализ. Трансформации. Трансформация расчленения (по С-С связи). Трансформация функциональных групп (введение, изменение, удаление).
- 5. Планирование синтеза. Синтоны и синтетические эквиваленты. Ассоциативный анализ.
- 6. Методы выделения и очистки органических соединений. Экстракция жидкостей и твердых веществ. Приборы для экстрагирования.
- 7. Способы перегонки. Перегонка при атмосферном давлении. Фракционная (дробная) перегонка. Перегонка с водяным паром. Перегонка в вакууме.
- 8. Методы выделения и очистки органических соединений. Очистка твердых веществ перекристаллизацией из воды и из органических растворителей. Выбор растворителя. Возгонка.
- 9. Окислительно-восстановительные реакции. Важнейшие окислители в органическом синтезе.
- 10. Окисление алканов. Аутоокисление.
- 11. Окисление кратной связи (реакции эпоксидирования, механизм образования цисгликолей, окисление алкенов в присутствии солей, реакции озонирования).
- 12. Окисление спиртов, альдегидов, кетонов.
- 13. Окисление ароматических соединений (синтез хинонов, окисление с расщеплением ароматических ядер, окисление боковых цепей в ароматических углеводородах).
- 14. Механизм каталитического гидрирования кратных связей.
- 15. Восстановление спиртов до углеводородов.
- 16. Восстановление карбонильной группы в альдегидах и кетонах в различных условиях.
- 17. Восстановление карбоновых кислот и их производных.
- 18. Нуклеофильное замещение у насыщенного (sp³-гибридного) атома углерода. Механизмы реакций типа S_N 1. Механизмы реакций S_N 2.
- 19. Нуклеофильное замещение галогенов в алкилгалогенидах.
- 20. Нуклеофильное замещение гидроксильной группы в спиртах.
- 21. Нуклеофильное замещение у алифатического (sp²-гибридного) атома углерода.
- 22. Синтез карбоновых кислот и их производных.
- 23. Способы получения первичных / вторичных / третичных аминов.
- 24. Перегруппировки, используемые для получения первичных аминов (расщепление по Гофману, расщепление по Шмидту, перегруппировка Курциуса, перегруппировка Лоссена, перегруппировка Бекмана).
- 25. Конденсация альдегидов и кетонов с: альдегидами и кетонами, сложными эфирами, ангидридами карбоновых кислот (реакция Перкина).

- 26. Конденсация альдегидов и кетонов с: нитроалканами (реакция Генри), алкинами (реакция Фаворского), углеводородами.
- 27. Конденсация альдегидов и кетонов с β-дикарбонильными соединениями (реакция Кневенагеля).
- 28. Конденсация альдегидов и кетонов. Сложноэфирная конденсация Кляйзена.
- 29. Конденсация альдегидов и кетонов. Реакция Михаэля (сопряженное присоединение нуклеофила к α , β -ненасыщенным системам).
- 30. Диазотирование и реакции диазосоединений.

5.2. Оценочные средства для текущего контроля успеваемости

5.2.1. Входной контроль (тестирование) (оценочное средство №2)			
Зад	(ание №1 (выберите один вариант ответа)		
	рмула высшего оксида элемента, образующег	о во	дородное соединение ЭН2, имеет вид:
1)	ЭO ₂ 2)	ЭС (
3)	90	4)	ЭO ₄
Ber 1)	дание №2 (выберите один вариант ответа) цества, содержащие только ковалентные поля PF ₅ , Cl ₂ O ₇ , NH ₄ Cl H ₃ PO ₄ , BF ₃ , CH ₃ COONH ₄	2)	пе химические связи, приведены в ряду: F ₂ , H ₂ SO ₄ , P ₂ O ₅ NO ₂ , SOCl ₂ , CH ₃ COOH
Зал	ание №3 (выберите один вариант ответа)		
	ешали 200 г 20%-ного и 300 г 10%-ного расть	воро	в глюкозы. Массовая доля вещества в
	ученном растворе равна %	•	
1)	15	2)	16
3)	18	4)	14
	дание №4 (выберите один вариант ответа) авнение реакции, практически осуществимой	B BC	олном растворе. имеет вил
1)			r r
,	$NaNO_3 + HCl = NaCl + HNO_3$		

- 3) $CuSO_4 + 2KOH = K_2SO_4 + Cu(OH)_2$
- 4) $Fe_2(SO_4)_3 + 6HNO_3 = 2Fe(NO_3)_3 + 3H_2SO_4$

Задание №5 (выберите несколько вариантов ответа)

$$LiH + H_2O \rightarrow ... + ...$$

Пропущенными веществами в схеме химической реакции являются ...

1) Li₂O

2) O₂

3) LiOH

4) H₂

Задание №6 (выберите один вариант ответа)

Для цепочки превращений

$$Fe \xrightarrow{\quad +HCl \quad} X_1 \xrightarrow{\quad +NbOH \quad} X_2 \xrightarrow{\quad t^0 \quad} X_3$$

конечным веществом X_3 является...

1) $Fe(OH)_2$

2) Fe₃O₄

3) FeO	4) Fe(OH) ₃			
 Задание №7 (выберите один вариант ответа) При взаимодействии оксида серы (IV) с избытком 1) гидросульфит натрия 3) сульфит натрия и вода Задание №8 (выберите один вариант ответа) С кислотами и щелочами взаимодействует оксид 1) хрома (III) 	2) гидросульфат натрия4) сульфат натрия и вода			
3) хрома (VI)	4) магния			
Задание №9 (выберите один вариант ответа) Раствор, в 500 мл которого растворено 1,825 г Но 1) 1 3) 5	Cl, имеет pH, равный 2) 2 4) 4			
Задание №10 (выберите один вариант ответа)				
При взаимодействии ионов Fe ³⁺ с гексацианофер				
1) бурого осадка	2) белого осадка4) кроваво-красного раствора			
3) темно-синего осадка	4) кроваво-красного раствора			
Задание №11 (выберите один вариант ответа) Объем 0,1н раствора КОН, необходимый для ней кислоты, равен миллилитрам. 1) 15 3) 30	атрализации 20 мл 0,15н раствора азотной 2) 45 4) 20			
Задание №12 (выберите один вариант ответа) Методы анализа, основанные на способности вещества поглощать свет определенной длины волны, называются 1) потенциометрическими 2) спектрофотометрическими 3) фотоэмиссионными 4) радиометрическими				
Задание №13 (выберите один вариант ответа) Если энтальпия образования SO ₂ равна –297 кДж/моль, то количество теплоты, выделяемое при				
сгорании 16 г серы, равно кДж.				
1) 148,5 3) 74,25	2) 297 4) 594			
Задание №14 (выберите один вариант ответа) Если температурный коэффициент химической р температуры от 20 °C до 50 °C скорость реакции 1) увеличивается в 6 раз 3) уменьшается в 2 раза	реакции равен 2, то при повышении			
Задание №15 (выберите один вариант ответа) Коэффициент перед молекулой восстановителя в уравнении реакции $KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + Na_2SO_4 + K_2SO_4 + H_2O$ равен 1) 2 2) 3 3) 1 4) 5				

5.2.2. Составление конспектов лекций по темам (оценочное средство №3)

- Тема 1. Введение в органический синтез
- Тема 2. Стратегия химического синтеза
- Тема 3. Методы и приемы органического синтеза
- Тема 4. Реакции окисления углеводородов
- Тема 5. Реакции окисления кислородсодержащих соединений
- Тема 6. Реакции восстановления
- Тема 7. Реакции замещения в ароматическом ряду
- Тема 8. Реакции, ведущие к образованию С-С-связи

5.2.3. Отчеты по лабораторным работам (оценочное средство №4)

План отчета по лабораторной работе

Тема лабораторной работы	
Цель лабораторной работы	
Задачи лабораторной работы	
Материалы и оборудование	
Реактивы	
Ход работы	1. Уравнения реакций и расчет количеств исходных
	веществ.
	2. Рисунки химических установок для синтеза.
	3. Описание хода работы.
	4. Наблюдения и результаты.
	5. Расчет количеств продуктов реакции и определение
	выхода продуктов реакции.
Вывод по лабораторной работе	

Перечень лабораторных работ:

Лабораторная работа №1 «Правила работы в лаборатории химического синтеза. Правила техники безопасности. Химическая посуда».

Лабораторная работа №2 «Методы выделения и очистки веществ. Перегонка при атмосферном давлении».

Лабораторная работа №3 «Методы выделения и очистки веществ. Перегонка с паром».

Лабораторная работа №4 «Выделение эфирных масел методом экстракции».

Лабораторная работа №5 «Методы очистки твердых веществ. Перекристаллизация с горячим фильтрованием. Возгонка бензойной кислоты».

- Лабораторная работа №6 «Синтезы по теме: реакции окисления и восстановления. Синтез ацетона, синтез антрахинона».
- Лабораторная работа №7 «Синтезы по теме: реакции карбоновых кислот и их производных. Синтез этилацетата, синтез бутилацетата, синтез изоамилацетата».
- Лабораторная работа №8 «Синтезы по теме: реакции карбоновых кислот и их производных. Синтез β-пентаацетилглюкозы, синтез ацетилсалициловой кислоты».
- Лабораторная работа №9 «Синтезы по теме: реакции конденсации. Синтез фенолфталеина, флуоресцеина, коричной кислоты».

5.2.4. Индивидуальное домашнее задание №1 (оценочное средство №5)

Вариант 1

- 1. Определите массовую долю раствора, полученного при смешивании 100 мл раствора серной кислоты с массовой долей 40% (плотностью 1,303 г/см³) и 500 мл 0,5 М раствора серной кислоты (плотность 1,07 г/см³).
- 2. Для получения насыщенного при 100^{0} С раствора нитрата натрия, было взято 500 мл воды при 4^{0} С. Полученный раствор охлажден до 20^{0} С. Рассчитайте массу выпавшего осадка, если растворимость соли при указанных температурах равна соответственно 176 и 88 г / 100 г воды. Чему рана молярная доля вещества в охлажденном растворе.
- 3. Рассчитайте равновесный потенциал цинкового электрода в сульфатном растворе цинкования при 50^{0} С. Состав электролита следующий: $ZnSO_{4} 0,05$ моль/л, $Na_{2}SO_{4} 0,01$ моль/л, $Al_{2}(SO_{4})_{3} 0,001$ моль/л. Принять, что $E^{0}z_{n}^{2+}/z_{n}$, 323 $K = E^{0}z_{n}^{2+}/z_{n}$, 298 K.
- 4. Составьте схему, напишите уравнения электродных реакций, у которого один из электродов кобальтовый ($a_{\text{Co}}^{2+}=10^{-1}$ моль/л), а другой стандартный водородный. Рассчитайте ЭДС элемента при 25^{0} С.
- 5. Закончите уравнение реакции и расставьте коэффициенты методом полуреакций: NaI + $PbO_2 + H_2SO_4 = \dots$
- 6. Смесь оксида серы IV и оксида углерода IV, массой 1,52 г, поглотили 33,9 мл гидроксида бария (массовая доля основания 21,4, плотность 1,18) Выпавший осадок отфильтровали. Фильтрат может прореагировать с 15,4 мл раствора серной кислоты с концентрацией 1,3 моль/л. Вычислите массовые доли газов в смеси и объем смеси (при н.у.).

- 1. Сколько граммов сульфата натрия и мл воды следует взять для приготовления насыщенного при $20~^{0}$ С (16%, плотность $1,141~\text{г/см}^{3}$) раствора объемом 1,5 л. Чему равна растворимость сульфат натрия при этой температуре.
- 2. При 293 К и p = 101 кПа растворимость сероводорода в воде равна 2,58 (m^3/m^3 воды). Рассчитайте массовую долю сероводорода в таком растворе.
- 3. Рассчитать электродные потенциалы магния в растворе его соли при концентрациях иона $Mg^{2+}\,0.1;\,0.01\,$ и $0.001\,$ моль/л.
- 4. Рассчитайте ЭДС кислородно-метанового элемента, в котором протекает следующая реакция: $CH_4(\Gamma) + 2O_2(\Gamma) = CO_2(\Gamma) + 2H_2O(\Gamma)$ при 298 К. Вычислите константу равновесия данной реакции.
- 5. Закончите уравнение реакции и расставьте коэффициенты методом полуреакций: $KI + KIO_3 + H_2SO_4$
- 6. Смесь порошкообразных серебра и меди, массой 4,52 г, нагрели с избытком концентрированной серной кислоты. Выделившийся при этом газ поглотили 34,9 мл раствора гидроксида бария (массовая доля основания 20,4%, плотность 1,20). Выпавший осадок отфильтровали. На полную нейтрализацию фильтрата израсходовали 18 мл соляной кислоты с концентрацией 1,67 моль/л. Вычислите массовые доли металлов в смеси и объем газа при н.у., выделившегося при действии кислоты на металлы.

5.2.5. Индивидуальное домашнее задание №2 (оценочное средство №6)

Примерный вариант

- **1.** Осуществить превращения: пропен \rightarrow 2-бром-3-метилбутан
- 2. Приведите пути превращения замещённых толуолов в замещённые бензальдегиды:

- **3.** Рассмотрите, как влияет амальгамирование на процесс восстановления карбонильных соединений металлами (Mg, Al, Zn).
- 4. Напишите схему хлорирования нитробензола.
- **5.** Дополните схему следующих превращений, укажите формулы промежуточных и конечного продуктов реакции:

$$CH_3$$
 $"O"$? $HOSO_3H$? $2 PCI_5$?

6. Напишите реакцию взаимодействия N-метил-N-этиламиноазобензола с соляной кислотой.

5.2.6. Письменная контрольная работа №1 (оценочное средство №7)

Вариант 1

- 1. Напишите уравнение реакции окисления этанола раствором перманганата калия в серной кислоте.
- 2. С помощью, каких реакций можно различить бутандиол-1,3 и бутандиол-2,3.
- 3. Допишите уравнения реакций:

4. Один моль углеводорода поглотил 1 моль водорода в присутствии платинового катализатора. После озонолиза образовавшегося вещества получена смесь ацетона и этаналя. Каким строением обладал исходный углеводород?

- 1. Напишите уравнение реакции окисления анилина до бензохинона дихроматом калия в серной кислоте.
- 2. Допишите уравнения реакций:

$$C_2H_5OCO$$
 CH_3 + LiAlH₄
+ NH₂-NH₂ + KOH

Na + C_2H_5OH

3. Осуществите превращения:

4. Как осуществить превращения:

a)
$$C_6H_5$$
— C_6H_5 — C_6H_5 — C_6H_5 — C_6H_5 — C_6H_5

b)
$$C_6H_5-C_6H_5$$
 $C_6H_5-C_6H_5$ OH $C_6H_5-C_6H_5$ OH

5.2.7. Письменная контрольная работа №2 (тестирование) (оценочное средство №8)

Вариант 1

	1.	$\mathbf{q_{T0}}$	изучает	органическая	химия	ď
--	----	-------------------	---------	--------------	-------	---

- а) свойства органических углеводородов;
- б) свойства углеводородов и их производных;
- в) реакции в живых организмах;
- г) свойства нефтепродуктов.

2. Основные природные источники предельных углеводородов – это:

- а) болотный газ и каменный уголь;
- б) нефть и природный газ;
- в) асфальт и бензин;
- г) кокс и полиэтилен.

3. Сколько существует сопряжённых диенов состава С5Н8?

- a) 2;
- б) 3;
- в) 4;
- г) 5;
- д) только один изопрен.

4. Бутин-1 можно отличить от бутина-2 по реакции:

- а) с бромной водой;
- б) по реакции с водой в кислой среде;
- в) с водородом;
- г) с аммиачным раствором оксида серебра.

5. С каким веществом реагирует толуол, но не реагирует бензол?

- а) водородом;
- б) хлором;
- в) азотной кислотой;
- г) водным раствором перманганата калия.

6. Углеводород является ароматическим, если он имеет:

- а) плоский углеродный скелет;
- б) циклический углеродный скелет;
- в) делокализованную систему, содержащую (4n + 2) π -электронов;
- г) одновременно все перечисленные выше признаки.

7. Каким веществом надо воспользоваться, чтобы различить этанол и гексан?

- a) Cl₂;
- б) Н2;
- в) H₂O;
- г) HNO₃.

8. Уксусный альдегид – продукт окисления:

- а) уксусной кислоты;
- б) пропанола;
- в) уксусного ангидрида;
- г) этанола.

9.	Муравьиная кислота окисляется, а уксусная нет: a) NaHCO ₃ ; б) Na ₂ CO ₃ ; в) CaO; г) [Ag(NH ₃) ₂]OH.
10.	Среди перечисленных соединений выберите амин: a) CH ₃ NO ₂ ; б) CH ₃ NH ₂ ; в) HNO ₃ ; г) HNO ₂ .
1.	Вариант 2 Сколько примерно известно органических соединений? а) 30 млн.; б) 3 млрд.; в) 50 тыс.; г) 30 тыс.
2.	С каким из перечисленных веществ алканы не реагируют ни при каких условиях: а) бромом; б) азотной кислотой; в) бромоводородом; г) озоном.
3.	Какие признаки отличают алкены от алканов? а) наличие кратной связи С-С; б) способность легко окисляться; в) способность присоединять водород; г) способность к полимеризации; д) все перечисленные выше признаки.
4.	Из какого спирта можно получить бутен-2? а) бутанола-1; б) бутанола-2; в) 2-метилбутанола-1; г) пропанола-2; д) вообще нельзя получить из спирта.
5.	Из какого вещества нельзя в одну стадию получить бензол? а) ацетилена; б) н-гексана; в) метилциклогексана; г) натриевой соли бензойной кислоты.
6.	Какие соединения изомерны ароматическим углеводородам ряда бензола с тем же числом атомов углерода? а) циклотриены; б) циклодиены; в) алифатические углеводороды с двумя двойными связями; г) производные бензола с одной двойной связью в боковой цепи.

7. Сколько существует первичных спиртов состава С₅H₁₂O?

- а) два;
- б) четыре;
- в) пять;
- г) восемь.

8. Какое вещество будет реагировать с любыми карбонильными соединениями?

- a) H₂;
- б) Cl₂;
- в) HCl;
- г) CH₃COOH.

9. Какая простейшая карбоновая кислота имеет изомер?

- а) метановая;
- б) уксусная;
- в) бутановая;
- г) пропеновая.

10. Среди перечисленных соединений выберите первичный амин:

- a) NH₃;
- б) CH₃-NH-CH₃;
- в) CH₃-CH₂-NH₂;
- г) NH₄Cl.

5.2.8. Написание реферата (оценочное средство №9)

- 1. Нафтохиноны в живой природе
- 2. Флуорофоры, их свойства и перспективы применения.
- 3. Природные и синтетические антиоксиданты.
- 4. Хиноидные красители. Типы красителей.
- 5. Таутомерия в органической химии. Таутомерия хиноноксимов.
- 6. Таутомерия в органической химии. Азо-хинонгидразонная таутомерия.
- 7. Витамины. История открытия.
- 8. Тетрациклиновые антибиотики. Применение.
- 9. Теобромин. Методы синтеза. Природные источники. Биологические свойства.
- 10. Кофеин. Методы синтеза. Природные источники. Биологические свойства.
- 11. Энергетический обмен. Легальные анаболические добавки.
- 12. Синтез и использование нингидрина в биохимических исследованиях.
- 13. Фотохимические процессы в природе. Фотосинтез сахаров.
- 14. Использование индандиона в синтезе веществ, обладающих биологической активностью.