МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Красноярский государственный педагогический университет им. В.П. Астафьева»

(КГПУ им. В.П. Астафьева)

ПРЕДМЕТНО-ПРАКТИЧЕСКИЙ МОДУЛЬ Физико-химические методы анализа

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Е11 Биологии, химии и методики обучения

Учебный план 44.03.05 Биология и химия (o, 2025) (актуальный).plx

44.03.05 Педагогическое образование (с двумя профилями подготовки) Направленность (профиль) образовательной программы Биология и химия

 Квалификация
 бакалавр

 Форма обучения
 очная

 Общая трудоемкость
 3 ЗЕТ

Часов по учебному плану 108 Виды контроля в семестрах:

в том числе: зачеты 8

 аудиторные занятия
 54

 самостоятельная работа
 53,85

 контактная работа во время
 0

 промежуточной аттестации (ИКР)
 0

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	8 (4.2)		Итого	
Недель	10	5/6		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	18	18	18	18
Практические	36	36	36	36
Контроль на промежуточную аттестацию (зачет)	0,15	0,15	0,15	0,15
В том числе в форме практ.подготовки	2	2	2	2
Итого ауд.	54	54	54	54
Контактная работа	54,15	54,15	54,15	54,15
Сам. работа	53,85	53,85	53,85	53,85
Итого	108	108	108	108

Программу составил(и):
трограмму составил(и). старший преподаватель, Якуненков А.В
Рабочая программа дисциплины
Физико-химические методы анализа
разработана в соответствии с ФГОС ВО:
Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (приказ Минобрнауки России от 22.02.2018 г. № 125
составлена на основании учебного плана:
44.03.05 Педагогическое образование (с двумя профилями подготовки) Направленность (профиль) образовательной программы Биология и химия
утвержденного учёным советом вуза от 25.06.2025 протокол № 8.
Рабочая программа одобрена на заседании кафедры
Е11 Биологии, химии и методики обучения
Протокол от 07.05.2025 г. № 9
Зав. кафедрой Антипова Е.М.
Согласовано с представителями работодателей на заседании НМС УГН(С), протокол №5 от 14.05.2025 г.
Председатель НМС УГН(С) доцент Горленко Н.М.
2025 г.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

формирование предметных компетенций студентов педагогического образования на основе овладения содержанием дисциплины «Физико-химические методы анализа»

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
П	Цикл (раздел) ОП:	Б1.В.02.ДВ.01				
2.1	Требования к предвари	тельной подготовке обучающегося:				
2.1.1	Неорганический синтез					
2.1.2	Органическая химия					
2.1.3	История химии					
2.1.4	Физическая и коллоидная химия					
2.1.5	Аналитическая химия					
2.1.6	Решение химических задач					
2.1.7	Общая и неорганическая химия					
2.2	Дисциплины (модули) предшествующее:	и практики, для которых освоение данной дисциплины (модуля) необходимо как				
2.2.1	Учебная (ознакомительная) практика (физико-химические методы анализа)					
2.2.2	Прикладная химия					

предшествующе	предшествующее:					
2.2.1 Учебная (ознако	2.1 Учебная (ознакомительная) практика (физико-химические методы анализа)					
2.2.2 Прикладная хим	ия					
3. 0	рормируемые компетенции и индикаторы их достижения					
ПК-1: Способен осв	аивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач					
ПК-1.1: Знает структуру,	, состав и дидактические единицы предметной области (преподаваемого предмета)					
Знать:						
Уровень 1	Знать в общих чертах структуру, состав и дидактические единицы дисциплины «Физико-химические методы анализа».					
Уровень 2	Знать структуру, состав и дидактические единицы дисциплины «Физико-химические методы анализа».					
Уровень 3	Знать и характеризовать структуру, состав и дидактические единицы дисциплины «Физико-химические методы анализа».					
Уметь:	•					
Уровень 1	Уметь осуществлять отбор отдельных элементов учебного содержания по дисциплине «Физико-химические методы анализа» для его реализации в образовательном процессе с помощью педагогических технологий, в том числе ИКТ, в соответствии с требованиями ФГОС ОО и ФГОС СОО.					
Уровень 2	Уметь с помощью наставника осуществлять отбор учебного содержания по дисциплине «Физико-химические методы анализа» для его реализации в образовательном процессе с помощью педагогических технологий, в том числе ИКТ, в соответствии с требованиями ФГОС ОО и ФГОС СОО.					
Уровень 3	Уметь осуществлять отбор учебного содержания по дисциплине «Физико- химические методы анализа» для его реализации в образовательном процессе с помощью педагогических технологий, в том числе ИКТ, в соответствии с требованиями ФГОС ОО и ФГОС СОО.					
Владеть:						
Уровень 1	Владеть некоторыми навыками решения профессиональных задач по обучению химии с использованием знаний в области физико-химических методов анализа.					
Уровень 2	Владеть навыками решения профессиональных задач по обучению химии с использованием знаний в области физико-химических методов анализа на базовом уровне.					
Уровень 3	Владеть навыками решения профессиональных задач по обучению химии с использованием знаний в области физико-химических методов анализа в нестандартных ситуациях или ситуациях повышенной сложности.					
соответствии с требован	лять отбор учебного содержания для его реализации в различных формах обучения в иями ФГОС ОО					
Знать:						
Уровень 1	Знать некоторые принципы отбора учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО.					
Уровень 2	Знать принципы отбора учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО на базовом уровне.					

	стр.
Уровень 3	Знать принципы отбора учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО на продвинутом уровне.
Уметь:	<u> </u>
Уровень 1	Уметь проявлять некоторые умения осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.
Уровень 2	Уметь с помощью наставника осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.
Уровень 3	Уметь самостоятельно осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО.
Владеть:	
Уровень 1	Владеть на пороговом уровне навыком отбора учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.
Уровень 2	Владеть на базовом уровне навыком отбора учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.
Уровень 3	Владеть на продвинутом уровне навыком отбора учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.
	мение разрабатывать различные формы учебных занятий, применять методы, приемы и гом числе информационные
Знать:	
Уровень 1	Знать некоторые формы учебных занятий, применять методы, приемы и технологии обучения.
Уровень 2	Знать различные формы учебных занятий, применять методы, приемы и технологии обучения.
Уровень 3	Знать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные.
Уметь:	·
Уровень 1	Уметь разрабатывать некоторые формы учебных занятий, применять методы, приемы и технологии обучения.
Уровень 2	Уметь разрабатывать различные формы различные формы учебных занятий, применять методы, приемы и технологии обучения.
Уровень 3	Уметь разрабатывать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные.
Владеть:	•
Уровень 1	Владеть некоторыми навыками разработки учебных занятий, применять методы, приемы и технологии обучения.
Уровень 2	Владеть навыками разработки некоторых форм учебных занятий, применять методы, приемы и технологии обучения.
Уровень 3	Владеть различными формами учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература и эл. ресурсы	Инте ракт.	Примечание	
	Раздел 1. Раздел 1. Электрохимические методы анализа							
1.1	Тема 1. Электролиз. Электрогравиметрия (2ч). Тема 2. Кулонометрические методы анализа(2ч). Тема 3. Кондуктометрические методы анализа(2ч). Тема 4. Потенциометрические методы анализа(2ч). Тема 5. Вольтамперометрические методы анализа(2ч).	8	10	ПК-1.1 ПК- 1.2 ПК-1.3	Л1.1 Л1.2 Л1.3 Л1.4		Входной контроль (тестирование). Составление конспектов лекций по темам.	

1.2	Тема 1. Электродный потенциал. Электрохимический эквивалент (4ч). Тема 2. Электролиз. Законы Фарадея (4ч). Тема 3. Кондуктометрия(4ч). Лабораторная работа №1 «Электрогравиметрическое определение содержания меди в растворе медного купороса»(4ч). Лабораторная работа №2 «Потенциометрическое титрование смеси хлороводородной и борной кислот»(4ч). /Пр/	8	20	ПК-1.1 ПК- 1.2 ПК-1.3	Л1.2 Л1.4	Отчет лаборат рабо Решени по те	орным там. е задач
1.3	Тема 1. Метод полуреакцийв уравнениях ОВР(12ч). Тема 2. Химический и электрохимический эквивалент (15ч). /Ср/	8	27	ПК-1.1 ПК-1.2 ПК-1.3	Л1.2 Л1.4	Индиви ое дом зада Письм контро работ	ашнее ние. енная ольная
	Раздел 2. Раздел 2. Оптические и хроматографические методы анализа						
2.1	Тема 6. Спектральные методы анализа (2ч). Тема 7. Атомно-эмиссионные методы анализа(2ч). Тема 8. Молекулярная спектроскопия (2ч). Тема 9. Хроматографические методы анализа (2ч). /Лек/	8	8	ПК-1.1 ПК- 1.2 ПК-1.3	Л1.2 Л1.4	Состав консп лекци тем	ектов ий по
2.2	Тема 4. Молекулярная спектроскопия. Тема 5. Атомная спектроскопия. Лабораторная работа №3 «Колориметрическое определение содержания ионов железа (III) в растворе». Лабораторная работа №4 «Хроматографический анализ. Определение содержания ионов магния методом ионообменной хроматографии». /Пр/	8	16	ПК-1.1 ПК- 1.2 ПК-1.3	Л1.2 Л1.4	Отчет лаборат рабо Решени по те	орным там. е задач
2.3	Тема 3.Оптическая плотность. Закон Бугера-Ламберта-Бера(12ч). Тема 4. Качественный и количественный спектральный анализ (14,85ч). /Ср/	8	26,85	ПК-1.1 ПК- 1.2 ПК-1.3	Л1.2 Л1.4	Письм контро работ Напис рефе	ольная а №2. сание
2.4	Зачет /КРЗ/	8	0,15	ПК-1.1 ПК- 1.2 ПК-1.3	Л1.2 Л1.4	Вопро заче	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Входной контроль (тестирование)

- 1. Как вычисляется молярная масса эквивалента в реакциях окисления-восстановления?
- а) молярная масса делится на число ионов водорода, участвующих в реакции;
- б) молярная масса делится на число ионов гидроксида, участвующих в реакции;
- в) молярная масса делится на произведение степени окисления металла на число атомов металла;
- г) молярная масса делится на число электронов, участвующих в реакции.
- 2. Чем пользуются для характеристики окислительно-восстановительных процессов?
- а) значениями электроотрицательности элементов;
- б) значениями редокс-потенциалов;
- в) числом принятых или отданных электронов;
- г) значением степени окисления.
- 3. Что называется стандартным редокс-потенциалом?
- а) потенциал пары, измеренный при температуре 0°С;

- б) потенциал пары, измеренный при температуре 18-25°С; концентрации ионов равны между собой;
- в) потенциал пары, измеренный при температуре 18-25°C при активной концентрации ионов 1 моль/л в паре со стандартным водородным электродом;
- г) потенциал пары, измеренный при температуре 0°С, при активной концентрации ионов 1 моль/л.

Текущий контроль

Примеры заданий индивидуального домашнего задания

Вариант 1

1. Допишите уравнение ОВР, расставьте коэффициенты, используя метод электронного баланса или метод полуреакций, укажите окислитель и восстановитель.

H2SO3 + I2 + H2O = ...

2. Расставьте коэффициенты в уравнении OBP, используя метод электронного баланса или метод полуреакций, укажите окислитель и восстановитель. Укажите направление данной реакции при известном значении рН и активностях реагентов (моль/л). Число в скобках соответствует активности вещества по порядку написания уравнения.

Sb + Br2 + KOH = KSbO2 + KBr + H2O

pH = 8.5 (1-0.001; 2-0.05; 4-0.002; 5-0.03)

3. Составьте схему гальванического элемента, включающего указанные металлы. Рассчитайте ЭДС при известных активностях ионов (моль/л), при температуре 298 К и Т1. Напишите электродные и суммарные уравнения реакций, протекающих в гальваническом элементе.

Медь – кадмий. a(Cd2+) = 0.8; a(Cu2+) = 0.01; T1 = 350 K.

Вариант 2

1. Допишите уравнение ОВР, расставьте коэффициенты, используя метод электронного баланса или метод полуреакций, укажите окислитель и восстановитель.

Mn(NO3)2 + (NH4)2S2O8 + H2O = HMnO4 + ...

2. Расставьте коэффициенты в уравнении OBP, используя метод электронного баланса или метод полуреакций, укажите окислитель и восстановитель. Укажите направление данной реакции при известном значении рН и активностях реагентов (моль/л). Число в скобках соответствует активности вещества по порядку написания уравнения.

Au + H2SeO4(конц.) = Au2(SeO4)3 + H2SeO3

pH = 2.5 (3-0.0005; 4-0.005)

3. Составьте схему гальванического элемента, включающего указанные металлы. Рассчитайте ЭДС при известных активностях ионов (моль/л), при температуре 298 К и Т1. Напишите электродные и суммарные уравнения реакций, протекающих в гальваническом элементе.

Железо – свинец. a(Fe2+) = 0.01; a(Pb2+) = 0.5; T1 = 273 K.

5.2. Темы письменных работ

Темы лекций для составления конспектов

- Тема 1. Электролиз. Электрогравиметрия.
- Тема 2. Кулонометрические методы анализа.
- Тема 3. Кондуктометрические методы анализа.
- Тема 4. Потенциометрические методы анализа.
- Тема 5. Вольтамперометрические методы анализа.
- Тема 6. Спектральные методы анализа.
- Тема 7. Атомно-эмиссионные методы анализа.
- Тема 8. Молекулярная спектроскопия.
- Тема 9. Хроматографические методы анализа.

Темы для выполнения отчетов по лабораторным работам

Лабораторная работа №1 «Электрогравиметрическое определение содержания меди в растворе медного купороса».

Лабораторная работа №2 «Потенциометрическое титрование смеси хлороводородной и борной кислот».

Лабораторная работа №3 «Колориметрическое определение содержания ионов железа (III) в растворе».

Лабораторная работа №4 «Хроматографический анализ. Определение содержания ионов магния методом ионообменной хроматографии».

Темы рефератов

- 1. Жизнь, деятельность и научные работы выдающихся отечественных ученых-химиков.
- 2. Физико-химические методы анализа в различных областях промышленности.
- 3. Теория фотоэффекта.
- 4. Химические методы анализа почвы.
- 5. Методы анализа химического состава минеральной и питьевой воды.
- 6. Физико-химические методы анализа методы анализа лекарственных средств.
- 7. Методы экстракции в исследовании равновесий.
- 8. Проблемы качества питьевой воды.

- 9.Промышленные вредные газы загрязнители атмосферы.
- 10. Анализ снеговой воды.
- 11. Химический анализ молока и кисломолочных продуктов.
- 12. Физико-химические методы анализа пищевых продуктов.

5.3. Фонд оценочных средств

Типовые вопросы к зачету по дисциплине «Физико-химические методы анализа»

- 1. Дайте классификацию методов анализа в химии. Охарактеризуйте физико-химические методы анализа. Раскройте понятия: аналитический сигнал, градуировочная функция, чувствительность, предел обнаружения, фон. Перечислите достоинства и недостатки физико-химических методов анализа.
- 2. Охарактеризуйте оптические методы анализа. Перечислите характеристики электромагнитного излучения. Дайте определение понятию спектр излучения. Опишите схему прибора монохроматора.
- 3. Охарактеризуйте метод атомно-эмиссионного спектрального анализа. Опишите принцип метода, расскажите об истории его развития. Дайте сравнительную характеристику источников возбуждения: пламя, электрическая дуга, электрическая искра, высокочастотная индуктивно-связанная плазма.
- 4. Перечислите способы регистрации спектров в атомно-эмиссионном спектральном анализе. Охарактеризуйте качественный и количественный атомно-эмиссионный спектральный анализ.
- 5. Охарактеризуйте метод молекулярно-адсорбционного спектрального анализа. Опишите принцип метода, расскажите об истории его развития. Сформулируйте закон Бугера-Ламберта-Бера. Перечислите основные узлы прибора спектрофотометра.
- 6. Назовите особенности фотометрических реакций. Укажите условия проведения фотометрического анализа. Дайте определения основным понятиям: ФЭК, светофильтр, кювета, коэффициент светополгощения. Приведите примеры использования метода фотометрии в качественном и количественном анализе.
- 7. Охарактеризуйте электрохимические методы анализа, приведите их классификацию. Дайте определения основных понятий: электрохимическая ячейка, электрохимический потенциал, количество электричества, удельная электропроводность раствора.
- 8. Охарактеризуйте метод электрогравиметрического анализа. Приведите формулировки законов Фарадея. Укажите области применения метода.
- 9. Проведите сравнительный анализ процессов электролиза в расплаве и растворе электролитов (с инертными и активными электродами). Охарактеризуйте катодные и анодные процессы при электролизе. Укажите формулу для расчета окислительно -восстановительного потенциала редокс-пары. Дайте определение понятию стандартный электродный потенциал.
- 10. Охарактеризуйте метод кулонометрического анализа. Объясните принцип работы и приведите классификацию метода. Дайте определение понятию электрохимический эквивалент. Укажите области применения метода.
- 11. Охарактеризуйте метод потенциометрического анализа. Приведите уравнение Нернста. Дайте определение понятию стандартный электрохимический потенциал. Приведите примеры применения методов прямой потенциометрии и потенциометрического титрования.
- 12. Приведите классификацию электродов. Опишите строение электродов 1-го и 2-го рода, редокс-электродов. Объясните принцип работы электродов сравнения: хлорсеребрянный электрод, каломельный электрод, хингидронный электрод.
- 13. Опишите строение и объясните принцип работы стеклянного электрода. Объясните принцип работы рН-метра. Приведите классификацию ионселективных электродов.
- 14. Опишите принцип метода кондуктометрического анализа. Приведите определения основных понятий: удельное сопротивление, удельная электропроводность, эквивалентная электропроводность. Сформулируйте закон независимого движения ионов Кольрауша. Укажите области применения метода.
- 15. Дайте сравнительную характеристику видов кондуктометрии: прямая кондуктометрия, кондуктометрическое титрование, высокочастотное титрование. Укажите области применения кондуктометрии.
- 16. Охарактеризуйте принцип построения полярограммы. Приведите определения основных понятий вольтамперометрического метода анализа: ртутный капающий электрод, поляризация, деполяризатор, остаточный ток, фарадеевский ток, предельный диффузионный ток, полярограмма, полярографические волны.
- 17. Дайте характеристику качественного и количественного полярографического анализа. Укажите области практического применения полярографии.
- 18. Охарактеризуйте хроматографические методы анализа. Приведите классификацию методов хроматографии. Опишите способы получения хроматограмм. Расскажите про опыты М.С. Цвета.
- 19. Опишите метод элюентной колоночной хроматографии. Объясните принцип работы метода. Укажите области практического применения метода.
- 20. Охарактеризуйте методы газовой и жидкостной хроматографии. Опишите принцип работы методов. Укажите области практического применения методов хроматографического анализа.
- 21. Объясните принцип метода бумажной хроматографии. Укажите области практического применения метода.
- 22. Объясните принцип метода тонкослойной хроматографии. Укажите области практического применения метода.

5.4. Перечень видов оценочных средств

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
	6.1. Рекомендуемая литература				
	6.1.1. Основная литература				
Авторы, составители Заглавие Издательство, го					

	Авторы, составители	Заглавие	Издательство, год
Л1.1	Фомина, А. Ю.	Физико-химические методы анализа в лабораторном практикуме по химии : учебно-методическое пособие	Самара, 2021
Л1.2	Поддубных, Л. П.	Физико-химические методы анализа: учебно-методическое пособие	Красноярск : КрасГАУ, 2015
Л1.3	Никитина Н. Г., Борисов А. Г., Хаханина Т. И.	Аналитическая химия и физико-химические методы анализа: учебник и практикум для вузов	Москва: Юрайт, 2022
Л1.4	Казин В. Н., Тихонов И. В., Плисс Е. М., Гробов А. М., Сирик А. В.	Физико-химические методы анализа: учебное пособие для вузов	Москва: Юрайт, 2022

6.3.1 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства

Для освоения дисциплины необходим компьютер с графической операционной системой, офисным пакетом приложений, интернет-браузером, программой для чтения PDF-файлов, программой для просмотра изображений и видеофайлов и программой для работы с архивами.

6.3.2 Перечень профессиональных баз данных и информационных справочных систем

- 1. Elibrary.ru: электронная библиотечная система: база данных содержит сведения об отечественных книгах и периодических изданиях по науке, технологии, медицине и образованию. Адрес: http://elibrary.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 2. Электронно-библиотечная система «Университетская библиотека онлайн». Адрес: https://biblioclub.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 3. Электронно-библиотечная система издательства «ЛАНЬ». Адрес: e.lanbook.com. Режим доступа: Индивидуальный неограниченный доступ.
- 4. Образовательная платформа «Юрайт». Адрес: https://urait.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 5. ИС Антиплагиат: система обнаружения заимствований. Адрес: https://krasspu.antiplagiat.ru. Режим доступа: Индивидуальный неограниченный доступ.

7. МТО (оборудование и технические средства обучения)

Перечень учебных аудиторий и помещений закрепляется ежегодным приказом «О закреплении аудиторий и помещений в

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Содержание дисциплины «Физико-химические методы анализа» изложено в двух базовых разделах. Раздел 1 «Электрохимические методы анализа» и раздел 2 «Оптические и хроматографические методы анализа». Изучению основного содержания дисциплины предшествует входной раздел (входное тестирование), который выявляет начальный уровень подготовки обучающихся.

Аудиторная работа включает посещение студентами лекций и лабораторно-практических занятий. На лекциях происходит изучение и конспектирование основного материала дисциплины, на практических занятиях — обсуждение и закрепление изучаемого материала через выполнение лабораторных работ и выполнение практических заданий, упражнений, письменных работ и решение задач.

Самостоятельная работа студентов включает следующие формы работы: работа с конспектами лекций, изучение основной и дополнительной литературы по темам курса, подготовка и оформление лабораторных работ, письменные работы по темам, выполнение индивидуальных домашних заданий, написание реферата по выбранной теме.

Рекомендации по оформлению отчета по лабораторной работе

Отчеты по лабораторным работам должны быть оформлены в отдельных тетрадях для лабораторных работ. Записи должны быть выполнены четко, аккуратно и грамотно.

Отчет по лабораторной работе начинается с указания темы, цели, задач, материалов и оборудования, реактивов. Далее излагается ход работы в порядке его выполнения. Заканчивается отчет выводами по работе.

Целью каждой лабораторной работы является закрепление знаний, полученных на лекциях и практических занятиях, а также из учебников в результате самостоятельной подготовки. На лабораторном занятии студентам предстоит решать учебно-познавательные и ситуационные задачи, выполнять химический эксперимент и делать соответствующие выводы, подтверждая или опровергая теоретические предпосылки.

В ходе эксперимента студенты приобретают полезные навыки работы с лабораторным оборудованием, синтезируют некоторые химические соединения, осваивают методы их очистки и идентификации.

Выводы по результатам лабораторной работы формулируются исходя из целей и задач работы и отражают приобретённые практические умения и навыки.

Рекомендации по написанию реферата

Реферат выполняется на стандартной бумаге формата A4 (210/297). Поля: левое -30 мм, правое -10 мм, верхнее 20 мм и нижнее -20 мм; интервал полуторный; шрифт в текстовом редакторе MicrosoftWord—Times New RomanCyr; размер шрифта -14, выравнивание по ширине, абзацный отступ -1,25 мм.

Титульный лист оформляется согласно образцу. Все страницы реферата нумеруются, на титульном листе номер страницы не ставится. Содержание начинается со второй страницы. Номер страницы ставится в центре нижней части страницы. В содержании отображаются названия основных разделов реферата с указанием номера страниц по тексту. К обязательным разделам относятся: введение, основная часть, заключение, список литературы.

Объем реферата зависит от выбранной темы, средний объем реферата составляет 15-25 страниц, краткое сообщение – до 5 страниц.

Заголовки основных разделов реферата (главы, параграфы) выделяются жирным шрифтом, выравнивание по центру. Точки в заголовках не ставятся. Каждая глава должны начинаться с новой страницы.

Таблицы и рисунки должны располагаться после упоминания о них в тексте. Название таблицы располагается над таблицей, подпись к рисунку – под рисунком. Таблицы и рисунки нумеруются.

Введение содержит информацию об актуальности выбранной темы. Во введении указывается цель написания реферата и задачи для достижения поставленной цели. Основная часть содержит разделы (главы и параграфы), раскрывающие содержание темы реферата. В заключении излагаются краткие выводы по результатам работы, характеризующие степень решения задач, поставленных во введении.

Список литературы должен содержать минимум 5 наименований. Список литературы оформляется в алфавитном порядке в соответствии с требованиями ГОСТ: указывается фамилия и инициалы автора, название литературного источника, место издания, наименование издательства, год издания. При использовании источников сети Интернет их перечень приводится в конце списка литературы.

При необходимости реферат может включать приложения (схемы, таблицы, рисунки и т.д.). Приложения нумеруются, ссылки на приложения приводятся в тексте реферата.