МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Красноярский государственный педагогический университет им. В.П. Астафьева»

(КГПУ им. В.П. Астафьева)

ПРЕДМЕТНО-ПРАКТИЧЕСКИЙ МОДУЛЬ Машиноведение

рабочая программа дисциплины (модуля)

Закреплена за кафедрой **D9 Физики, технологии и методики обучения**

Учебный план 44.03.05 Технология и дополнительное образование (очное, 2025).plx

44.03.05 Педагогическое образование (с двумя профилями подготовки) Направленность (профиль) образовательной программы Технология и дополнительное образование (по направлению робототехника, аддитивные и

иммерсивные технологии) Выпускающая кафедра:

Физики, технологии и методики обучения

 Квалификация
 бакалавр

 Форма обучения
 очная

 Общая трудоемкость
 2 ЗЕГ

Часов по учебному плану 72 Виды контроля в семестрах:

в том числе: зачеты 5

 аудиторные занятия
 36

 самостоятельная работа
 35,85

 контактная работа во время
 0

 промежуточной аттестации (ИКР)
 0

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	5 (3.1)		Итого	
Недель	16	2/6		
Вид занятий	УП РП		УП	РП
Лекции	18	18	18	18
Лабораторные	18	18	18	18
Контроль на промежуточную аттестацию (зачет)	0,15	0,15	0,15	0,15
Итого ауд.	36	36	36	36
Контактная работа	36,15	36,15	36,15	36,15
Сам. работа	35,85	35,85	35,85	35,85
Итого	72	72	72	72

Программу составил(и):	
кин Лонент Песковский Евгений Анатольевии	

Рабочая программа дисциплины

Машиноведение

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (приказ Минобрнауки России от 22.02.2018 г. № 125)

составлена на основании учебного плана:

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Направленность (профиль) образовательной программы Технология и дополнительное образование (по направлению робототехника, аддитивные и иммерсивные технологии)

Выпускающая кафедра:

Физики, технологии и методики обучения

утвержденного учёным советом вуза от 01.01.1754 протокол № .

Рабочая программа одобрена на заседании кафедры

D9 Физики, технологии и методики обучения

Протокол от 07.05.2024 г. № 10

Зав. кафедрой Латынцев Сергей Васильевич

Согласовано с представителями работодателей на заседании НМС УГН(С), протокол № 08 от 14.05.2025 г.

Председатель НМС УГН(С) Аёшина Е.А.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основной целью преподавания дисциплины «Машиноведение» и изучения ее студентами технологического педагогического профиля подготовки специалистов является формирование профессионально-педагогического потенциала студентов, их теоретическая и практическая полготовка, пля работы в канестве унителей общеобразовательной унебных

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
I	Цикл (раздел) ОП: Б1.В.02					
2.1	2.1 Требования к предварительной подготовке обучающегося:					
2.1.1	Вводный курс механики	Вводный курс механики				
2.1.2	Механика					
2.1.3	Материаловедение и нов	вые материалы				
2.1.4	3D-моделирование и прототипирование					
2.1.5	Прикладная механика					
2.1.6	Инженерная и компьютерная графика					
2.2	2 Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:					
2.2.1	Техническое творчество и основы проектирования					
2.2.2	Технологический практикум					
2.2.3	Мобильные роботехнические устройства					
2.2.4	Практикум по моделированию технологических устройств					
2.2.5	Передовые производственные технологии					

2.2.4 Практикум по мо	оделированию технологических устройств
2.2.5 Передовые произ	зводственные технологии
3. 0	БОРМИРУЕМЫ Е КОМПЕТЕНЦИИ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ
ППК-1: Способ	бен планировать и применять технологические процессы изготовления объектов труда в профессиональной педагогической деятельности
	ими о традиционных, современных и перспективных технологических процессах
Знать:	1.0
Уровень 1	Самостоятельно и полностью правильно отвечает на учебные вопросы о традиционных, современных и перспективных технологических процессах
Уровень 2	Самостоятельно отвечает, но имеет затруднения с ответами на некоторые учебные вопросы о традиционных, современных и перспективных технологических процессах
Уровень 3	Имеет затруднения с ответами на большинство учебных вопросов о традиционных, современных и перспективных те хнологических процессах, отвечает с помощью преподавателя
Уметь:	
Уровень 1	Способен самостоятельно и полностью правильно теоретически объяснять применение на практике знаний о традиционных, современных и перспективных технологических процессах
Уровень 2	Способен теоретически объяснять применение на практике основных знаний о традиционных, современных и перспективных технологических процессах, но с объяснением некоторых испытывает затруднения
Уровень 3	Не может без помощи преподавателя теоретически объяснять применение на практике основных знаний о традиционных, современных и перспективных технологических процессах,
Владеть:	
Уровень 1	Имеет развитые навыки самостоятельного применения на практике знаний о традиционных, современных и перспективных технологических процессах
Уровень 2	Имеет основные, базовые навыки самостоятельного применения на практике знаний о традиционных, современных и перспективных технологических процессах
Уровень 3	Имеет неразвитые навыки и испытывает затруднения с самостоятельным применением на практике знаний о традиционных, современных и перспективных технологических процессах
ППК-2:	Способен осуществлять проектную деятельность при создании предметной среды
ППК-2.2: Демонстрирует	владение методами проектирования и конструирования при создании предметной среды
Знать:	
Уровень 1	Самостоятельно и полностью правильно отвечает на теоретические вопросы по методам проектирования и конструирования при создании предметной среды

Уровень 2	Самостоятельно отвечает, но имеет затруднения с ответами на некоторые теоретические вопросы по методам проектирования и конструирования при создании предметной среды	
Уровень 3	Имеет затруднения с ответами на большинство теоретических вопросов по методам проектирования и конструирования при создании предметной среды	
Уметь:	·	
Уровень 1	Способен самостоятельно и корректно использовать разные методы проектирования и конструирования при создании предметной среды	
Уровень 2	Способен самостоятельно использовать типовые методы проектирования и конструирования при создании предметной среды	
Уровень 3	Способен только при помощи преподавателя использовать типовые методы проектирования и конструирования при создании предметной среды	
Владеть:	·	
Уровень 1	Имеет опыт разнообразного практического применения методов проектирования и конструирования при создании предметной среды	
Уровень 2	Имеет опыт типового применения методов проектирования и конструирования при создании предметной среды	
Уровень 3	Имеет малый опыт практического применения методов проектирования и конструирования при создании предметной среды	

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр/ Курс	Часов	Компетен- ции	Литература и эл. ресурсы	Инте ракт.	Примечание
	Раздел 1. Раздел 1. Основы физикотехнических представлений о механизмах и машинах. Общетехнические вопросы конструирования механизмов и машин.						
1.1	Основные технические понятия и термины теории механизмов и машин (ТММ). Типовые конструкционные элементы механизмов, их классификации и предназначения. Основные требования к изготовлению механизмов. Технические регламенты и стандарты. /Лек/	5	2		Л1.1 Л1.2 Л1.3		
	Раздел 2. Раздел 2. Структурное устройство механизмов, вопросы структурного и кинематического анализа и синтеза. 2.1. Анализ плоских ры чажных механизмов						
2.1	Структурные и кинематические характеристики механизма. Кинематические пары и их степени подвижности. Кинематические цепи. Механизм как кинематическая цепь. Степень подвижности механизма. Плоские механизмы, их разновидности. Теория групп Ассура /Лек/	5	4		Л1.1 Л1.2 Л1.3		
2.2	Основы расчета степени подвижности плоского механизма. Особые конструкционные случаи для нахождения степеней подвижности плоских механизмов. Структурный анализ и синтез плоских рычажных (стержневых) механизмов. Применение теории групп Ассура /Лаб/	5	6		Л1.1 Л1.2 Л1.3		контрольное задание
	Раздел 3.2.2. Структурный анализ пространственных механизмов. Структурный анализ зубчатых механизмов.						

					C1p. 3
3.1	Пространственные кинематические цепи. Основы теории манипуляторов. Степени подвижности манипуляторов. Вопросы применения манипуляторов.	5	2	Л1.1 Л1.2 Л1.3	
3.2	/Лек/ Основы теории манипуляторов. Структурный анализ манипуляторов Расчет степеней подвижности и маневренности манипуляторов. /Лаб/	5	2	Л1.1 Л1.2 Л1.3	контрольное задание
3.3	Передачи, преобразующие параметры вращения. Фрикционные передачи. Зубчатые передачи. Разновидности зубчатых передач. Рядовые и ступенчатые зубчатые механизмы. Структурный анализ плоских зубчатых механизмов.	5	2	Л1.1 Л1.2 Л1.3	
3.4	Структурный анализ зубчатых механизмов. Расчет степеней подвижности механизмов с неподвижными и подвижными осями. /Лаб/	5	2	Л1.1 Л1.2 Л1.3	контрольное задание
3.5	Элементы кинематического анализа зубчатых механизмов. Передаточные отношения и передаточные числа. Теория расчета передаточных отношений зубчатых механизмов с неподвижными и подвижными осями. /Лек/	5	4	Л1.1 Л1.2 Л1.3	
3.6	Кинематический анализ зубчатых механизмов с подвижными и неподвижными осями. Расчет передаточных отношений /Лаб/	5	4	Л1.1 Л1.2 Л1.3	контрольное задание
	Раздел 4. Раздел 3. Элементы теории кинематического анализа механизмов в обобщенных координатах.				
4.1	Понятие обобщённых координат. Использование методов обобщённых координат для исследования движения механизмов. Аналитические методы кинематического анализа рычажных механизмов в обобщённых координатах. Аналоги скоростей и ускорений / Лек/	5	4	Л1.1 Л1.2 Л1.3	
4.2	Применение аналитических методов кинематического анализа рычажных механизмов в обобщённых координатах. Кинематический анализ методом замкнутых векторных контуров (метод Зиновьева). Нахождение аналогов скоростей и ускорений. /Лаб/	5	4	Л1.1 Л1.2 Л1.3	контрольное задание
	Раздел 5. Самостоятельная работа студента по темам дисциплины в семестре				
5.1	Самостоятельная работа студента по темам дисциплины в семестре /Ср/ Раздел 6. Промежуточная аттестация	5	35,85	Л1.1 Л1.2 Л1.3	
<u> </u>	(зачет)		0.15	T1 1 T1 2	
6.1	Промежуточная аттестация (зачет) /КРЗ/	5	0,15	Л1.1 Л1.2 Л1.3	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Входной контроль – собеседования (устные опросы):

- системы измерений физико-математических величин;
- представления о системах отсчета системах координат;
- понятия дифференциального и интегрального исчислений.

Текущий контроль:

- Контрольная работа 1 Структурный анализ механизмов по Ассуру.
- Контрольная работа 2 Кинематический анализ многозвенных рычажных механизмов по методу замкнутых векторных контуров (методу В.А.Зиновьева)

5.2. Темы письменных работ

5.3. Фонд оценочных средств

- 1. Базовые термины и понятия курса теории машин и механизмов деталь, звено, узел, механизм, машина. Понятие механических соединений. Классификация (виды) соединений (подвижные неподвижные, разъёмные неразъёмные). Примеры механических соединений разных видов и функционального предназначения (шарниры (виды шарниров), жёсткая (глухая) заделка, ползунные, кулачковые, резьбовые, зубчатые, фрикционные соединения и др.).
- 2. Понятие кинематики как научно-предметной области, раздела физики. Основные физические величины, изучением, исследованием и нахождением которых занимаются при решении кинематических задач. Представление радиус-вектора, скорости, ускорения и пройденного материальной точкой пути в декартовой системе координат. Математический смысл скорости.
- 3. Естественный способ задания движения. Дуговая координата. Естественный трехгранник и его оси. Нахождение скорости, ускорения и пройденного пути при естественном способе задания движения общий вывод уравнения скорости, ускорения и пройденного пути. Тангенциальное и нормальное ускорения.
- 4. Физические модели материальной точки и (абсолютно) твердого тела. Понятие степеней свободы в механике. Аналитический (расчетный) смысл степеней свободы. Свободные тела. Понятие связей. Реакции связей. Определение (обоснование) количества степеней свободы материальной точки в пространстве. Определение (обоснование) количества степеней свободы свободного твердого тела в пространстве.
- 5. Кинематическое понятие звеньев механизма. Механизм как система звеньев. Входные (ведущие; начальные), промежуточные (соединительные), выходные (ведомые; исполнительные; рабочие) звенья. Типология наименований звеньев в механизмах (основные типовые названия в зависимости от предназначения, конструкционных и функциональных особенностей). Понятие кинематических пар.
- 6. Понятие степени подвижности кинематической пары. Понятие класса кинематической пары. Связь между степенью подвижности и классом кинематической пары. Классификация кинематических пар по степеням подвижности (классам кинематических пар). Высшие и низшие кинематические пары. Примеры кинематических пар разных классов и видов.
- 7. Понятие кинематических цепей. Механизм как кинематическая цепь. Классификации видов кинематических цепей (простая сложная, замкнутая незамкнутая, плоская пространственная). Практические примеры разных видов кинематических цепей механизмов.
- 8. Структурная схема механизма. Понятие степени подвижности механизма. Практический (технический) смысл степени подвижности механизма. Принципы и методы расчета степеней подвижности пространственных и плоских механизмов формулы Сомова-Малышева и Чебышева. Избыточные (пассивные) связи. Местные подвижности.
- 9. Структурный анализ механизмов. Анализ плоских рычажных механизмов. Понятие групп Ассура. Степень подвижности групп Ассура. Условия (аналитические требования) для выделения (нахождения) групп Ассура в механизме. Характеристические формулы, устанавливающие соотношения элементов групп Ассура между собой (для структурного анализа).
- 10. Классификация (систематизация) групп Ассура. Понятия классов, порядков групп Ассура по классификации Л.В.Ассура И.И.Артоболевского. Примеры групп Ассура разных классов и порядков, содержащих кинематические пары разных видов.
- 11. Понятие класса механизма в структурном анализе по Ассуру. Понятие начального (исходного) механизма 1-го класса. Принципы, правила, алгоритмы структурного анализа, составления и записи структурной формулы строения механизма.
- 12. Плоские механизмы с высшими кинематическими парами, примеры таких механизмов. Замена высших кинематических пар низшими в структурном анализе по Ассуру принципы, правила, алгоритмы замены. Примеры плоских механизмов с высшими кинематическими парами и замены в них высших пар низшими.
- 13. Фрикционные передачи. Ременные передачи. Зубчатые передачи (механизмы). Разновидности зубчатых механизмов. Планетарные механизмы. Определение (нахождение) степеней подвижности зубчатых механизмов.

- 14. Кинематика зубчатых механизмов. Передаточные отношения и передаточные числа зубчатых механизмов. Кинематический анализ механизмов с неподвижными осями, анализ рядных и ступенчатых зубчатых механизмов. Кинематический анализ планетарных механизмов. Метод обращения движения (метод Виллиса).
- 15. Манипуляторы. Кинематические цепи манипуляторов. Основные конструкционные разновидности манипуляционных механизмов и их структурные элементы. Структурный анализ манипуляторов. Определение (нахождение) степени подвижности и маневренности манипулятора.
- 16. Элементы обобщенного кинематического анализа механизмов. Степени свободы и связи в многозвенных механизмах. Понятие обобщённых координат. Виды обобщённых координат. Принципы выбора обобщённых координат для анализа и расчётов механизмов. Определение числа обобщённых координат, необходимых для расчёта кинематических и геометрических характеристик механизма. Функции положения механизма.
- 17. Кинематические передаточные функции, аналоги скоростей и ускорений в механике многозвенных механизмов. Соотношения для их расчёта в зависимости от линейных или угловых переменных (обобщённых координат). Связь аналогов скоростей и ускорений с истинными величинами.
- 18. Определение геометрических и кинематических характеристик движения многозвенных рычажных механизмов, аналитические методы. Метод Зиновьева (замкнутых векторных контуров) для определения мест положения, нахождения аналогов скоростей и ускорений и истинных скоростей и ускорений элементов многозвенного механизма: основные положения метода.

5.4. Перечень видов оценочных средств

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература 6.1.1. Основная литература					
	Авторы, составители	Заглавие	Издательство, год			
Л1.1	Тигров В. П.	Путь к творчеству: учебное пособие	Липецк: Липецкий государственный педагогический университет имени П.П. Семенова-Тян-Шанского, 2018			
Л1.2	Дюндик О. С., Згонник И. П., Федорова М. А.	Кинетостатика механизмов в машиноведении: учебное пособие	Омск: Омский государственный технический университет (ОмГТУ), 2020			
Л1.3	Федорова М. А., Дюндик О. С., Пеньков И. А., Сыркин В. В.	Прикладные разделы машиноведения: учебное пособие	Омск: Омский государственный технический университет (ОмГТУ), 2019			

6.3.1 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства

Для освоения дисциплины необходим компьютер с графической операционной системой, офисным пакетом приложений, интернет-браузером, программой для чтения PDF-файлов, программой для просмотра изображений и видеофайлов и программой для работы с архивами.

6.3.2 Перечень профессиональных баз данных и информационных справочных систем

- 1. Elibrary.ru: электронная библиотечная система: база данных содержит сведения об отечественных книгах и периодических изданиях по науке, технологии, медицине и образованию. Адрес: http://elibrary.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 2. Электронно-библиотечная система «Университетская библиотека онлайн». Адрес: https://biblioclub.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 3. Электронно-библиотечная система издательства «ЛАНЬ». Адрес: e.lanbook.com. Режим доступа: Индивидуальный неограниченный доступ.
- 4. Образовательная платформа «Юрайт». Адрес: https://urait.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 5. ИС Антиплагиат: система обнаружения заимствований. Адрес: https://krasspu.antiplagiat.ru. Режим доступа: Индивидуальный неограниченный доступ.

7. МТО (оборудование и технические средства обучения)

Перечень учебных аудиторий и помещений закрепляется ежегодным приказом «О закреплении аудиторий и помещений в

8. МЕТОДИЧ ЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

В организационно-методическую структуру курса дисциплины «Машиноведение» включены следующие аудиторные

(контактные) формы организации учебных занятий студентов: лекции и лабораторные практикумы (для практического освоения материала и выполнения самостоятельных учебных заданий обучающим ися). В образовательной программе предусмотрен достаточный объем часов на внеаудиторную самостоятельную работу студентов. В контактной части образовательного курса лекции являются основным форматом представления научно-теоретической информации в обобщенном виде по данной дисциплине. Посещение лекций является важным компонентом знаниевопонятийной подготовки студентов в предметной области дисциплины. Преподавание лекций по данной дисциплине организовано на принципах обязательной моментальной обратной связи по коммуникационной линии преподавательстудент. При этом посещение студентом лекций и фиксация им лекционного материала не является достаточным условием для формирования у обучающегося полных теоретических понятийных представлений, практикоприменительных пониманий и компетентностей для самостоятельного использования учебно-научного материала дисциплины. Для формирования у студентов способностей и навыков практического применения теоретических знаний в программу данного образовательного курса входят учебные лабораторные практикумы, на которых основным дидактическим подходом является общегрупповой разбор и самостоятельное решение студентами определенных учебных задач, выполнение дидактических заданий под консультационным контролем преподавателя, выступающего здесь, главным образом, в роли эксперта-консультанта в предметной области, координирующего и корректирующего самостоятельную работу студентов. Здесь реализуются принципы коммуникационной интерактивности образовательных процессов как по линии студент преподаватель, так и по линиям студент – студент. Важность посещения студентом лабораторных практикумов определяется тем, что эти практикумы являются местами и ситуациями собственной учебно -деятельностной практики студента в контексте освоения учебной дисциплины, без чего становится проблемным достижение обучающимися

Для продуктивной работы студента на лабораторных практикумах обязательно необходима его самостоятельная внеаудиторная работа с учебной, научной литературой, по меньшей мере той, которая рекомендована для освоения курса. Для более полного и развернутого понимания разных научно-теоретических аспектов дисциплины важно использовать информацию, научные интерпретации, трактовки, пояснения не из одного, а из разных учебных пособий и научных источников, так как в каких-то одних источниках может быть более понятно для конкретного студента и более детально рассмотрены какие-то одни научные вопросы из курса дисциплины, а в других – другие. Для этого современный студент должен пользоваться не только печатными учебными и методическими пособиями, но и должен освоить технологии работы с электронными библиотечными ресурсами, доступ к которым обеспечивается всем студентам вуза.

компетентностного уровня в осваиваемой научно-предметной области.