МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Красноярский государственный педагогический университет им. В.П. Астафьева»

(КГПУ им. В.П. Астафьева)

ПРЕДМЕТНО-ПРАКТИЧЕСКИЙ МОДУЛЬ Основы программируемой микроэлектроники

рабочая программа дисциплины (модуля)

Учебный план 44.03.05 Технология и дополнительное образование (очное, 2025).plx

44.03.05 Педагогическое образование (с двумя профилями подготовки) Направленность (профиль) образовательной программы Технология и дополнительное образование (по направлению робототехника, аддитивные и

иммерсивные технологии) Выпускающая кафедра:

Физики, технологии и методики обучения

 Квалификация
 бакалавр

 Форма обучения
 очная

 Общая трудоемкость
 2 ЗЕТ

Часов по учебному плану 72 Виды контроля в семестрах:

в том числе: зачеты с оценкой 8

 аудиторные занятия
 46

 самостоятельная работа
 25,85

 контактная работа во время
 0

 промежуточной аттестации (ИКР)
 0

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	8 (4.2)		Итого		
Недель	16	1/6			
Вид занятий	УП	РΠ	УП	РΠ	
Лекции	20	20	20	20	
Лабораторные	26	26	26	26	
Контроль на промежуточную аттестацию (зачет)	0,15		0,15		
Итого ауд.	46	46	46	46	
Контактная работа	46,15	46,15	46,15	46,15	
Сам. работа	25,85	25,85	25,85	25,85	
Итого	72	72	72	72	

(0 moc, 2025).pix
Программу составил(и):
ктн, Доцент, Шадрин Игорь Владимирович
Рабочая программа дисциплины
Основы программируемой микроэлектроники
разработана в соответствии с ФГОС ВО:
Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки
44.03.05 Педагогическое образование (с двумя профилями подготовки) (приказ Минобрнауки России от 22.02.2018 г. № 125)
составлена на основании учебного плана:
44.03.05 Педагогическое образование (с двумя профилями подготовки)
Направленность (профиль) образовательной программы Технология и дополнительное образование (по направлению робототехника, аддитивные и иммерсивные технологии)
Выпускающая кафедра:
Физики, технологии и методики обучения
утвержденного учёным советом вуза от $01.01.1754$ протокол № .
Рабочая программа одобрена на заседании кафедры
D9 Физики, технологии и методики обучения
H.,
Протокол от 07.05.2025 г. № 10
Зав. кафедрой Латынцев Сергей Васильевич
Согласовано с представителями работодателей на заседании НМС УГН(С), протокол № от20г.
Председатель НМС УГН(С)
1754 г.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Формирование системы знаний, умений и навыков для организации работы обучающихся по конструированию схем из электронных компонентов и программированию контроллеров для управления ими.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ				
I	Цикл (раздел) ОП: Б1.В.02.ДВ.02				
2.1	.1 Требования к предварительной подготовке обучающегося:				
2.1.1	1 Электротехника и электроника				
2.1.2	2 Высшая математика				
2.1.3	Мехатроника и робототехника				
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:				
2.2.1	Основы разработки виртуальных инструментов				
2.2.2	2 Основы соревновательной робототехники				
2.2.3	В Практикум по моделированию технологических устройств				

1	оделированию технологических устройств
3. (ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ
ППК-1: Спосо	бен планировать и применять технологические процессы изготовления объектов труда в профессиональной педагогической деятельности
ППК-1.1: Владеет знания	ями о традиционных, современных и перспективных технологических процессах
Знать:	
Уровень 1	Уверенно знает особенности традиционных, современных и перспективных технологических процессов
Уровень 2	Знает особенности традиционных, современных и перспективных технологических процессов
Уровень 3	Поверхностно знает особенности традиционных, современных и перспективных технологических процессов
Уметь:	
Уровень 1	Умеет без труда оценивать преимущества и недостатки традиционных, современных и перспективных технологических процессов
Уровень 2	Умеет оценивать преимущества и недостатки традиционных, современных и перспективных технологических процессов
Уровень 3	Испытывает затруднения с оценкой преимуществ и недостатков традиционных, современных и перспективных технологических процессо
Владеть:	
Уровень 1	Уверенно владеет навыками оценки преимуществ и недостатков традиционных, современных и перспективных технологических процессов
Уровень 2	Владеет навыками оценки преимуществ и недостатков традиционных, современных и перспективных технологических процессов
Уровень 3	Поверхностно владеет навыками оценки преимуществ и недостатков традиционных, современных и перспективных технологических процессов
ППК-1.2: Демонстрирует	гумения эксплуатации учебного оборудования при создании объектов труда
Внать:	
Уровень 1	Уверенно знает особенности эксплуатации учебного оборудования при создании объектов труда
Уровень 2	Знает особенности эксплуатации учебного оборудования при создании объектов труда
Уровень 3	Поверхностно знает особенности эксплуатации учебного оборудования при создании объектов труда
Уметь:	
Уровень 1	Без труда умеет применять учебное оборудование при создании объектов труда
Уровень 2	Умеет применять учебное оборудование при создании объектов труда
Уровень 3	Испытывает затруднения с применением учебного оборудования при создании объектов труда
Владеть:	
Уровень 1	Уверенно владеет навыками эксплуатации учебного оборудования при создании объектов труда

Уровень 2	Владеет навыками эксплуатации учебного оборудования при создании объектов
	труда
Уровень 3	Поверхностно владеет навыками эксплуатации учебного оборудования при создании
	объектов труда

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература и эл. ресурсы	Инте ракт.	Примечание
	Раздел 1. Основы алгоритмизации и программирования						
1.1	Введение. Общие сведения о программируемой электронике и ее схемотехнике /Лек/	8	2		Л1.1 Л1.2Л2.1		
1.2	Программирование в среде Arduino IDE /Лек/	8	2		Л1.1 Л1.2Л2.1		
1.3	Алгоритмы обработки массивов. Поисковые алгоритмы /Лек/	8	2		Л1.3Л2.1		
1.4	Базовые алгоритмические структуры /Лаб/	8	2		Л1.3Л2.1		В соответствии с ФОС
1.5	Алгоритмы обработки массивов /Лаб/	8	2		Л1.3Л2.1		В соответствии с ФОС
1.6	Алгоритмы сортировки массивов /Лаб/	8	2		Л1.3Л2.1		В соответствии с ФОС
1.7	Общие сведения о программируемой электронике и ее схемотехнике /Cp/	8	2		Л1.1 Л1.2Л2.1		
1.8	Алгоритмы обработки массивов /Ср/	8	2		Л1.3Л2.1		
1.9	Алгоритмы сортировки и поиска /Ср/	8	4		Л1.3Л2.1		
1.10	Программирование в среде Arduino IDE /Cp/	8	2		Л1.4Л2.1		
	Раздел 2. Схемотехника и программирование на платформе Arduino						
2.1	Элементная база платформы Arduino /Лек/	8	2		Л1.1 Л1.2		
2.2	Цифровые контакты ввода-вывода. Широтно-импульсная модуляция /Лек/	8	2		Л1.1 Л1.2		
2.3	Опрос аналоговых датчиков /Лек/	8	2		Л1.1 Л1.2		
2.4	Использование транзисторов и управляемых двигателей /Лек/	8	2		Л1.1 Л1.2		
2.5	Сдвиговые регистры /Лек/	8	2		Л1.1 Л1.2		
2.6	Взаимодействие с жидкокристаллическими дисплеями /Лек/	8	2		Л1.1 Л1.2		
2.7	Учебные задачи для проектной деятельности школьников /Лек/	8	2		Л1.1 Л1.2		
2.8	Организация цифрового вводавывода /Лаб/	8	2		Л1.1 Л1.2		В соответствии с ФОС
2.9	Опрос аналоговых датчиков /Лаб/	8	2		Л1.1 Л1.2		В соответствии с ФОС
2.10	Управление электродвигателями постоянного тока /Лаб/	8	2		Л1.1 Л1.2		В соответствии с ФОС
2.11	Использование сервоприводов и шаговых двигателей /Лаб/	8	2		Л1.1 Л1.2		В соответствии с ФОС

2.12	Сдвиговые регистры /Лаб/	8	4	Л1.1 Л	1.2	В соответствии с ФОС
2.13	Взаимодействие с жидкокристаллическим дисплеем /Лаб/	8	2	л1.1 л	1.2	В соответствии с ФОС
2.14	Основы программирования на языке С# /Лаб/	8	6	л1.3 л	1.4	В соответствии с ФОС
2.15	Управление Windows-приложением через последовательный интерфейс /Ср/	8	2	л1.3 л	1.4	В соответствии с ФОС
2.16	Учебные задачи для проектной деятельности школьников /Cp/	8	2	л1.1 л	1.2	В соответствии с ФОС
2.17	Элементная база Arduino /Cp/	8	2	Л1.1 Л	1.2	
2.18	Цифровой и аналоговый ввод- вывод /Ср/	8	4	Л1.1 Л	1.2	
2.19	Управление двигателями и сервоприводами /Ср/	8	3,85	Л1.1 Л	1.2	
2.20	Взаимодействие с компьютером через последовательный интерфейс /Ср/	8	2	Л1.1 Л	1.2	
2.21	Зачёт с оценкой /КРЭ/	8	0,15	Л1.1 Л Л1.3 Л1.4Л Л2.1	2.1	В соответствии с ФОС

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Практические задания по базовому модулю №1 «Основы алгоритмизации и программирования»

- 1. Составьте обзор программируемых контроллеров, доступных для использования в общеобразовательных учреждениях
- 2. Составьте алгоритм нахождения корней трёх квадратных уравнений на алгоритмическом языке
- 3. Составьте операторную запись алгоритма нахождения корней трёх квадратных уравнений
- 4. Составьте блок-схему алгоритма нахождения корней трёх квадратных уравнений
- 5. Поменяйте местами значения переменных х и у с использованием промежуточной переменной (t:=x; x:=y; y:=t;)
- 6. Составьте программу нахождения корней трёх квадратных уравнений.
- 7. Пары неотрицательных, вещественных чисел вводятся с клавиатуры. Посчитать произведение для каждой пары и сумму всех чисел (использовать while).
- 8. Заполнить и вывести на экран массив 5 х 10 случайных целых чисел в диапазоне от -100 до 100.
- 9. Найти сумму всех элементов одномерного массива, имеющих четные индексы.
- 10. Создать одномерный массив случайных целых чисел в диапазоне (-7,2). Переставить в обратном порядке элементы массива.
- $11.\ B$ двумерном массиве 5×10 случайных чисел организовать линейный поиск первого, последнего и всех вхождений элементов, удовлетворяющих условию.
- 12. Провести сортировку одномерного массива целых чисел методом «Последовательных минимумов».
- 13. Провести сортировку одномерного массива целых чисел методом «Пузырька».
- 14. Провести сортировку «Включением» одномерного массива целых чисел при его заполнении.

Практические задания по базовому модулю №2 «Схемотехника и программирование на платформе Arduino»

- 1. Составьте обзор аппаратной части платформы Arduino
- 2. Запрограммируй мигание светодиода с частотой 1 Гц (0,5 сек светится, 0,5 сек не светится).
- 3. Постройте и запрограммируйте светофор.
- 4. Постройте электронную схему со стягивающим резистором для регистрации нажатия на кнопку (светофор переключается по нажатию кнопки).
- 5. Постройте электронную схему с подтягивающим резистором для регистрации нажатия на кнопку (светофор переключается по нажатию кнопки).
- 6. Постройте и запрограммируйте электронную схему, плавно увеличивающую, а затем уменьшающую силу свечения светодиода (используйте ШИМ).
- 7. Отобразите в мониторе порта среды Arduino IDE текущие показания датчика освещенности (необходимо построить и запрограммировать на основе фоторезистора).
- 8. Введите ограничения на исходные значения и нормируйте шкалу (0 совсем темно, 100 ярче не бывает).
- 9. Постройте и запрограммируйте управление частотой мигания светодиода с помощью аналогового сигнала (например, регулируем потенциометром).

- 10. Постройте и запрограммируйте управление скоростью вращения двигателя с помощью ШИМ на основе аналогового сигнала (например, регулируем потенциометром).
- 11. Постройте и запрограммируйте управление направлением вращения двигателя постоянного тока по нажатию кнопки с помощью Н-моста
- 12. Постройте и запрограммируйте управление серводвигателем на основе показаний датчика освещенности или температуры (например, чем темнее, тем больше угол поворота серводвигателя).
- 13. Постройте и запрограммируйте схему управления шаговым двигателем. Изменяйте скорость вращения двигателя, циклически увеличивая ее и уменьшая.
- 14. Постройте и запрограммируйте схему, реализующую эффект «Бегущий всадник»
- 15. Постройте и запрограммируйте схему отображения данных о расстоянии до препятствия в виде гистограммы
- 16. Управляя светодиодами на четырехразрядном семисегментном индикаторе с использованием сдвигового регистра, отобразите показания датчика освещенности.
- 17. Отобразите на экране ЖК-дисплея текущие показания датчика освещенности.
- 18. Отобразите на экране ЖК-дисплея текущие показания датчика освещенности в виде анимированного прогрессбара.
- 19. Создайте программу включения-выключения светодиодом с помощью визуальной формы Windows-приложения.
- 20. Создайте программу управления яркостью светодиода с помощью визуальной формы Windows-приложения
- 21. Создайте Windows-приложение, отображающее текущее расстояние до препятствия в режиме реального времени с интервалом 0,5 сек.
- 22. Создайте Windows-приложение, содержащее область, яркость которой зависит от положения ручки потенциометра
- 23. Создайте Windows-приложение, отображающее изменение уровня освещенности в виде графика, изменяющегося в режиме реального времени с частотой 0,1 с.
- 24. Создайте Windows-приложение, отображающее изменение уровня освещенности в виде графика, изменяющегося в режиме реального времени с частотой 0,1 с, отображающего последние 100 значений.
- 25. Разработайте кейс внеурочного мероприятия для школьников по реализации проекта малой автоматизации.

5.2. Темы письменных работ

ПРИМЕРНЫЕ ТЕМЫ РЕФЕРАТОВ

- 1. Тенденции развития компонентной базы электроники.
- 2. Современная схемотехника.
- 3. Характеристики и особенности версий контроллеров Arduino.
- 4. Средства программирования контроллеров Arduino.
- 5. Организация управления контроллером Arduino по беспроводным каналам связи.

5.3. Фонд оценочных средств

Вопросы для зачета

- 1. Виды программируемой электроники, назначение и классификация программируемых контроллеров.
- 2. Основные понятия алгоритмов. Определение и свойства алгоритма. Алгоритмические системы. Общие правила построения алгоритмов. Способы записи алгоритмов
- 3. Структура алгоритма. Понятие базовых алгоритмических структур. Описание линейных и разветвляющихся алгоритмов.
- 4. Структура алгоритма. Понятие базовых алгоритмических структур. Описание циклических алгоритмов.
- 5. Алгоритмы обработки одномерных массивов и матриц. Нахождение минимальных и максимальных элементов в массивах, алгоритмы вставки и удаления элементов из массива.
- 6. Алгоритмы сортировки массивов. Метод сортировки обменом.
- 7. Алгоритмы сортировки массивов. Метод сортировки выбором.
- 9. Алгоритмы сортировки массивов. Метод сортировки включением.
- 10. Электронные элементы и компоненты платформы Arduino и способы их сопряжения.
- 11. Подсоединение светодиодов, закон Ома, расчёт мощности.
- 12. Программирование цифровых выводов. Широтно-импульсная модуляция.
- 13. Считывание данных с цифровых контактов (стягивающий и подтягивающий резисторы). Устранение «дребезга» кнопок.
- 14. Понятие об аналоговых и цифровых сигналах. Преобразование аналогового сигнала в цифровой.
- 15. Использование аналоговых датчиков.
- 16. Управление аналоговыми выходами по сигналу от аналоговых входов.
- 17. Подключение двигателей постоянного тока (борьба с выбросами напряжения, использование транзистора в качестве переключателя, назначение защитных диодов и отдельного источника питания).
- 18. Управление направлением и скоростью вращения двигателя постоянного тока с помощью ШИМ.
- 19. Виды и принцип работы серводвигателя.
- 20. Виды, принцип работы, достоинства и недостатки шаговых двигателей.
- 21. Принцип действия и назначение сдвиговых регистров.
- 22. Взаимодействие с жидкокристаллическими дисплеями.
- 23. Среда программирования Microsoft Visual Studio.
- 24. Использование USB и последовательного интерфейса.
- 25. Особенности учебных проектов малой автоматизации

5.4. Перечень видов оценочных средств

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература						
6.1.1. Основная литература						
	Авторы, составители	Заглавие	Издательство, год			
Л1.1	Легостаев Н. С., Четвергов К. В.	Микроэлектроника: учебное пособие	Томск: Эль Контент, 2013			
Л1.2	Дыбко М. А., Удовиченко А. В., Волков А. Г.	Цифровая микроэлектроника: учебное пособие	Новосибирск: Новосибирский государственный технический университет, 2019			
Л1.3 Златопольский Д. М. Программирование: типовые задачи, алгоритмы, методы: учебное пособие		Москва: Лаборатория знаний, 2020				
Л1.4	Зюзьков В. М.	Программирование: учебное пособие	Томск: Эль Контент, 2013			
Л1.5	Гунько А. В.	Программирование: учебно-методическое пособие	Новосибирск: Новосибирский государственный технический университет, 2019			
		6.1.2. Дополнительная литература	L			
Авторы, составители Заглавие Издательство, год						
Л2.1	Троян П. Е.	Микроэлектроника: учебное пособие	Томск: Томский государственный университет систем управления и радиоэлектроники, 2007			

6.3.1 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства

Для освоения дисциплины необходим компьютер с графической операционной системой, офисным пакетом приложений, интернет-браузером, программой для чтения PDF-файлов, программой для просмотра изображений и видеофайлов и программой для работы с архивами.

6.3.2 Перечень профессиональных баз данных и информационных справочных систем

- 1. Elibrary.ru: электронная библиотечная система: база данных содержит сведения об отечественных книгах и периодических изданиях по науке, технологии, медицине и образованию. Адрес: http://elibrary.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 2. Электронно-библиотечная система «Университетская библиотека онлайн». Адрес: https://biblioclub.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 3. Электронно-библиотечная система издательства «ЛАНЬ». Адрес: e.lanbook.com. Режим доступа: Индивидуальный неограниченный доступ.
- 4. Образовательная платформа «Юрайт». Адрес: https://urait.ru. Режим доступа: Индивидуальный неограниченный доступ.
- 5. ИС Антиплагиат: система обнаружения заимствований. Адрес: https://krasspu.antiplagiat.ru. Режим доступа: Индивидуальный неограниченный доступ.

7. МТО (оборудование и технические средства обучения)

Перечень учебных аудиторий и помещений закрепляется ежегодным приказом «О закреплении аудиторий и помещений в

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Важное место в освоении материала по курсу «Основы программируемой микроэлектроники» отводится самостоятельной работе студентов во внеаудиторное время с материалом, изложенным в рекомендуемой литературе и интернет-источниках, т.к. без знания теоретического материала и осмысления поставленных задач невозможно выполнение практических заданий связанных с конструированием и программированием электронных схем. Посещение лабораторных занятий является обязательным для полноценного овладения дисциплиной.

Рефераты необходимо сдавать преподавателю в напечатанном виде. Объем реферата не более 9 страниц машинописного текста включая титульный лист, содержание и список литературы. Текстовый материал оформляется 14 шрифтом через 1,15 интервал, красная строка 1,25, интервал между абзацами «0», отступ: слева 3; справа 2, выравнивание текста по ширине страницы. Структурными элементами являются:

- Титульный лист
- Содержание

- Введение
- Основная часть
- Заключение и выводы
 Библиографический список (не менее 5 источников, которыми могут быть ресурсы в сети Интернет для которых указывается URL)