МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.П. Астафьева»

(КГПУ им. В.П. Астафьева)

Институт математики, физики и информатики

Кафедра-разработчик_технологии и предпринимательства

УТВЕРЖДЕНО

на заседании кафедры

Протокол № 5 от 06 мая 2020 г.

зав.кафедрой

С.В. Бортновский

ОДОБРЕНО

На заседании научно-методического совета специальности (направления

подготовки) Протокол № 8

от 20 мая 2020 г.

Председатель НМСС Бортновский С.В.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации обучающихся

Системы разработки виртуальных приборов систем

(наименование дисциплины/модуля/вида практики)

44.04.01 Педагогическое образование

(код и наименование направления подготовки)

Физическое и технологическое образование в новой образовательной практике

(направленность (профиль) образовательной программы)

Магистр

(квалификация (степень) выпускника)

Составитель: Бортновский С.В., доцент

1. Назначение фонда оценочных средств

1.1. Целью создания ФОС дисциплины является установление соответствия учебных достижений запланированным результатам обучения и требованиям основной профессиональной образовательной программы, рабочей программы дисциплины.

ФОС дисциплины решает задачи:

- контроль и управление процессом приобретения студентами необходимых знаний, умений, навыков и уровня сформированности компетенций, определенных в ФГОС ВО по соответствующему направлению подготовки;
- контроль (с помощью набора оценочных средств) и управление (с помощью элементов обратной связи) достижением целей реализации ОПОП, определенных в виде набора общепрофессиональных и профессиональных компетенций выпускников;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных методов обучения в образовательный процесс Университета.
 - 1.2. ФОС разработан на основании нормативных документов:
- федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.04.01 Педагогическое образование (уровень магистратуры);
- образовательной программы Физическое и технологическое образование в новой образовательной практике, заочной формы обучения высшего образования по направлению подготовки 44.04.01 Педагогическое образование;
- положения о формировании фонда оценочных средств для текущего контроля успеваемости, промежуточной и итоговой (государственной итоговой) аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета,

программам магистратуры, программам подготовки научно-педагогических кадров в аспирантуре — в федеральном государственном бюджетном образовательном учреждении высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева» утвержденного приказом ректора № 297 (п) от 28.04.2018.

2. Перечень компетенций подлежащих формированию в рамках дисциплины

2.1. Перечень компетенций, формируемых в процессе изучения дисциплины:

- ПК-3 способность организовывать научно-исследовательскую деятельность обучающихся;
- ПК-4 способность формировать у обучающихся умения применять физические и технологические знания при решении учебных, учебно-исследовательских и исследовательских задач;
- ПК-5 способность устанавливать соответствие между фундаментальными физическими знаниями и прикладным их характером.

2.2. Оценочные средства

Компетенция	Дисциплины, практики, участвующие	Тип контроля	Оценочное средство/КИМ	
	в формировании		Номер	Форма
	данной компетенции		•	1
ПК-3 способность	Учебная практика:	Текущий	1	Решение
организовывать	научно-	контроль		практических
научно-	исследовательская	успеваемости		задач.
исследовательскую	работа			
деятельность	Учебная практика	Промежуточная	2	Зачет
обучающихся	Ознакомительная	аттестация		
	практика			
	Производственная			
	практика			
	Преддипломная			
	практика			
	Деловой иностранный			
	язык			
	Современные проблемы			
	науки и образования			
	Теоретические основы			

	T		1	T
	педагогического			
	проектирования			
	Проектирование			
	образовательных			
	программ			
	Проектирование систем			
	исследовательской			
	работы обучающихся			
	Техническая механика			
	Физический эксперимент			
	в образовании			
	Системы разработки			
	виртуальных приборов			
	Основы ТРИЗ			
	педагогики			
	Подготовка к сдаче и			
	сдача государственного			
	экзамена			
	Выполнение и защита			
	выпускной			
	квалификационной			
	работы			
ПК-4 способность	Производственная	Текущий	1	Решение
формировать у	практика	контроль	1	практических
обучающихся	Научно-	успеваемости		задач.
умения применять	исследовательская	успеваемости		зиди 1.
физические и	работа	Промежуточная	2	Зачет
технологические	Компьютерная графика	аттестация		3u 101
знания при	Техническая механика	аттестация		
решении учебных,	Физический эксперимент			
учебно-	в образовании			
исследовательских	Физика в контексте			
И	современного			
исследовательских	естествознания			
задач	Современный			
задач	физический практикум в			
	профильном обучении			
	Образовательная			
	робототехника			
	Методика обучения			
	_			
	решению задач по физике			
	Системы разработки			
	виртуальных приборов			
	Основы ТРИЗ			
	педагогики			
	Подготовка к сдаче и			
	сдача государственного			
	экзамена			
	Выполнение и защита			

	работы			
ПК-5 способность	Производственная	1	Решен	1
устанавливать	практика		ие	
соответствие	Технологическая		практи	
между	(проектно-		ческих	
фундаментальным	технологическая)	2	задач.	2
и физическими	практика			
знаниями и	Техническая механика		Зачет	
прикладным их	Физический эксперимент			
характером	в образовании			
	Физика в контексте			
	современного			
	естествознания			
	Современный			
	физический практикум в			
	профильном обучении			
	Образовательная			
	робототехника			
	Методика обучения			
	решению задач по			
	физике			
	Системы разработки			
	виртуальных приборов			
	Подготовка к сдаче и			
	сдача государственного			
	экзамена			
	Выполнение и защита			
	выпускной			
	квалификационной			
	работы			
3 Фонт ононони	IIV ONOTOTO TITO TROMON			

3. Фонд оценочных средств для промежуточной аттестации

- 3.1. Фонды оценочных средств включают: вопросы к зачету.
- 3.2. Оценочные средства.
- 3.2.1. Оценочное средство вопросы к зачету и экзамену.

Критерии оценивания по оценочному средству 3 - вопросы к зачету.

Формируе	Продвинутый уровень	Базовый уровень	Пороговый уровень
мые	сформированности	сформированности	сформированности
компетенц	компетенций	компетенций	компетенций
ии	(90-100 баллов)	(80-89 баллов)	(70-79 балла)
	зачтено	зачтено	зачтено
ПК-3.4,5	Ответ на вопрос	Ответ на вопрос	Ответ на вопрос в
	полный,	удовлетворяет уже	целом правильный, но
	правильный,	названным	нечетко
	показывает, что	требованиям, но есть	формулируются
	обучающийся	неточности в	понятия, имеют место
	правильно и	изложении фактов,	затруднения в
	исчерпывающе	определении понятий,	самостоятельном
	раскрывает	объяснении	объяснении
	содержание	взаимосвязей.	взаимосвязей,
	вопроса,	Однако,	непоследовательно

конкретизирует	обучающийся может излагается материал
его фактическим	легко устранить
материалом,	неточности по
демонстрирует	дополнительным и
оптимальные	наводящим вопросам
алгоритмы.	преподавателя.

Менее 70 баллов – компетенция не сформирована

4. Фонд оценочных средств для текущего контроля успеваемости

4.1. Фонды включают следующие оценочные средства:

1 – Решение практических задач;

2 -зачет;

4.2. Критерии оценивания

4.2.1. Критерии оценивания по оценочному средству 1 — Решение практических задач.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Правильное применение программных	4
блоков	
Умение составлять программу на	2
языке Labview	
Комплексное (техническое и	4
программное) проектирование	
решения поставленной задачи	
Максимальный балл	10

5. Оценочные средства для промежуточной аттестации. Типовые вопросы к зачету

- 1. Программная среда LABVIEW. Виртуальные приборы.
- 2. Компоненты виртуального прибора.
- 3. Создание и редактирование виртуального прибора.
- 4. Обзор устройств ввода и вывода.
- 5. Обзор функций. Примеры простых виртуальных приборов.
- 6. Последовательность обработки данных в LABVIEW.
- 7. Типы и проводники данных. Локальные переменные.
- 8. Математические функции и функции сравнения в Labview.
- 9. Логические (булевские) функций в Labview.

- 10. Подпрограммы в Labview.
- 11. История развития Labview.
- 12. Место Labview в классификации языков программирования. Примеры использования программной среды Labview в реальных технических устройствах, машинах и механизмах.
- 13. Инструментальная панель лицевой панели.
- 14. Дополнительная панель и ее функции.
- 15. Свойства объектов виртуального прибора. Разработка и примеры использования многошкальных виртуальных устройств ввода и вывода. Кластера данных. Функции Bundle, Unbundle.
- 16. Основные возможности и характеристики инженерной среды программирования Labview. Интерфейс пользователя. Понятие «виртуальный прибор». Компоненты виртуального прибора. Пример оформление виртуального прибора.
- 17. Последовательность обработки данных в LabVIEW. Типы и проводники данных. Локальные переменные и примеры их использования.
- 18. Базовые алгоритмические структуры: ветвление в Labview. Функция Select. Логическая структура Case.
- 19. Базовые алгоритмические структуры: циклы в Labview. Цикл While.
- 20. Базовые алгоритмические структуры: циклы в Labview. Цикл For. Доступ к значениям предыдущей итерации. Сдвиговые регистры. Стек сдвиговых регистров. Вложенные циклы.
- 21. Модульный принцип построения программ. Узел Формула. Подпрограмма виртуального прибора.
- 22. Использование переменных, констант и подпрограмм в Labview. Составление выражений (математических и текстовых).
- 23. Системы сбора данных SensorDaq (Vernier), LabQuest Mini. Датчики для измерения и регистрации различных параметров.

- 24. Принципы сбора данных. Работа с системами сбора данных в Labview. Функция сбора данных с помощью мастера SensorDaq (Vernier) и LabQuest Mini. Аналоговое и цифровое считывание данных.
- 25. Создание строковых элементов управления и отображения данных. Функция работы со строками.
- 26. Функции файлового ввода/вывода в LABVIEW.
- 27. Объявление массивов. Создание массивов с помощью цикла.
- 28. Двумерные массивы и вложенные циклы. Использование функций работы с массивами.

Практические задания по базовому модулю

Модуль1 «Общие сведения о LABVIEW»

- 1. Составить программу для преобразования введенных с клавиатуры °C от 100°C до +100°C в Фаренгейты (1,8*t°C +32°) и Кельвины (t°C +273°), результат вывести:
- А) на 3 термометра.
- Б) на 1 устройство вывода с 3 шкалами.
- 2. Создать 3 устройства: 2 устройства ввода для величин: спидометр для скорости, таймер для времени 1 устройства вывода: ОДОМЕТР (Устройство показывающее пробег автомобиля) показывающее путь, пройденный телом.
- 3. Создать устройство 3 устройства ввода для величин: «А», «В», «С» стороны треугольника 2 устройства вывода: «ПОЛУПЕРИМЕТР» и «ПЛОЩАДЬ». Расчет площади провести по формуле Герона.
- 4. Создайте виртуальный инструмент, в котором разместите 3 устройства ввода для величин: «А», «В», «С» и устройство вывода «Дискрементат», «Корней квадратного уравнения».
- 5. Создайте математический калькулятор.
- 6. Создайте виртуальный прибор, который по заданным координатам двух точек координатной плоскости найти расстояние между данными точками:
- в двумерном пространстве;

- в трехмерном пространстве.
- 7. Создадим виртуальный прибор, который сравнивает два числа от 0 до 100, сгенерированных функцией Random. Если первое число больше или равно второму, то должен включаться светодиод. Для наглядности результаты отображаются с помощью двух устройств вывода.
- 8. Создайте программу имитирующую работу «Светофора», с возможностью ввода и изменения времени горения красного, желтого и зеленого сигналов.
- 9. Составить программу для подсчета суммы цифр в записи целого числа. Число вводиться с клавиатуры.
- 10. Составить программу для подсчета сумма первых N целых чисел Число N вводиться с клавиатуры.
- 11. Составить программу для подсчета сумма первых N четных и нечетных чисел Число N вводиться с клавиатуры.
- 12. Вычисляется сумма первых 100 целых чисел.
- 13. Составить программу для преобразования введенных с клавиатуры °C от -100°C до +100°C в Фаренгейты (1,8*t°C +32°) и Кельвины (t°C +273°), результат вывести:
- А) на 3 термометра.
- Б) на 1 устройство вывода с 3 шкалами.

Данные рассчитывать с помощью функции – формула или формула Node.

- 14 . С помощью функции Select создайте виртуальный прибор, который сравнивает делитель с нулем, если делитель отличен от нуля, вычисляется частное от деления двух вещественных чисел, в противном случае частное полагается равным –0.
- 15. Лабораторная работа Проверка закона Шарля (Изохорный процесс)
- 16. Лабораторная работа Измерение длины звуковых волн в воздухе и определение показателя адиабаты
- 17. Лабораторная работа Измерение ЭДС и внутреннего сопротивления источника тока

- 18. Лабораторная работа Построение вольт-амперной характеристики лампы накаливания, исследование зависимости температуры вольфрамовой нити от напряжения на лампе.
- 19. Лабораторная работа Исследование равномерного движения тела.
- 20. Лабораторная работа Исследование равноускоренного движения тела.
- 21. Лабораторная работа Изучение движения системы связанных тел на машине Атвуда.
- 22. Лабораторная работа Определение коэффициента трения скольжения.
- 23. Лабораторная работа Изучение колебаний физического маятника. Определение коэффициента затухания колебаний маятника.
- 24. Лабораторная работа Изучение колебаний пружинного маятника.