МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В.П. АСТАФЬЕВА (КГПУ им. В.П. Астафьева)

Кафедра-разработчик Кафедра математики и методики обучения математике

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ЧИСЛОВЫЕ СИСТЕМЫ

Направление подготовки 44.03.01 Педагогическое образование. Направленность (профиль) образовательной программы Математика

Квалификация (степень): БАКАЛАВР

Форма обучения: заочная

Рабочая программа дисциплины «Числовые системы» составлена к. ф.-м. н., профессором С.В. Лариным

Рабочая программа дисциплины актуализирована профессором кафедры математики и методики обучения математике С.В. Лариным. Протокол № _8_ от _12__ мая 2021г.

Заведующий кафедрой ______ Л.В. Шкерина

Одобрено научно-методическим советом ИМФИ КГПУ им. В.П.

Астафьева _21__мая _2021г. Протокод № 7 наука

Председатель____

С.В. Бортновский

Лист внесения изменений

Дополнения и изменения в рабочую программу дисциплины Числовые системы на 2021/2022 учебный год

В программу вносятся следующие изменения:

- 1. Обновлены титульные листы рабочей программы и фонда оценочных средств.
- 2. Обновлена и согласована с Научной библиотекой КГПУ им. В.П. Астафьева «Карта литературного обеспечения (включая электронные ресурсы)», содержащая основную и дополнительную литературу, современные профессиональные базы данных и информационные справочные системы.

Программа пересмотрена и одобрена на заседании кафедры 12 мая 2021г., протокол № 8

Внесенные изменения утверждаю: Заведующий кафедрой Шкерина Людмила Васильевна

M. Meny

Одобрено НМС ИМФИ 21 мая 2021 г., протокол №7 Председатель Бортновский Сергей Витальевич

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Место дисциплины в структуре образовательной программы. Рабочая программа дисциплины «Числовые системы» для подготовки обучаемых по направлению подготовки 44.03.01 составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (далее ФГОС ВО), утвержденного приказом Министерства образования и науки Российской Федерации от 21 ноября 2014 г. N 1505 и профессионального стандарта «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)», утвержденного приказом Министерства труда и социальной защиты РФ от 18 октября 2013 г. №544н. Программа составлена в соответствии со стандартом РПД в КГПУ им. В.П. Астафьева, утвержденным Учёным советом университета 30.09.2015 (протокол №9). Дисциплина «Числовые системы» включена в учебный план по заочной форме обучения. Код дисциплины в учебном плане – Б1.ВД. Программа пересмотрена и одобрена на заседании кафедры 12 мая 2021г., протокол № 8. Одобрено НМС ИМФИ 21 мая 2021 г., протокол №7.

1.2. Общая трудоемкость дисциплины.

Общий объем времени, отводимый на изучение дисциплины -2 зачетных единицы или 72 часа., 2 курс, 4-й семестр.

Предусмотрено построение индивидуальных планов (в пределах трудоёмкости дисциплины).

Предполагается следующая работа студентов над освоением курса:

- анализ основного учебного материала по изложению чисел в школьной математике;
 - построение теории числовых систем на основе выводов из аксиом;
- решение основных алгоритмических задач по аксиоматической теории числовых систем;
- практика создания схем изложения школьного учебного материала по числам с учетом их аксиоматических теорий (о чем умалчивают школьные учебники, говоря о числах);
- написание рефератов, подготовка докладов и сообщений, связанных с методикой изложения чисел в школьной математике с использованием анимационных возможностей среды GeoGebra;
 - исследовательские работы методического и научного характера.
 - 1.3. Цель и задачи освоения дисциплины:

Числа изучаются в школе и являются стержневой темой всей школьной математики. Аксиоматическое построение теории числовых систем является важнейшей частью фундамента всей математики. Аксиомы непрерывности системы действительных чисел составляют основу математического анализа. Аксиомы числовых систем важны в связи с изучением оснований геометрии, а также при использованием алгебраических методов в геометрии. Изложение программного

на алгебраическом материала дисциплины ведется понятий использованием таких фундаментальных алгебры алгебраическая операция, группа, кольцо, упорядоченное поле, алгебра над полем конечного ранга и так далее. Общие требования к аксиоматическим теориям роднят данную дисциплину с математической логикой. Целью дисциплины является изложение научных основ изучения чисел в школьной математике, перевод интуитивных знаний о числах на твердую основу выводов, исходя из аксиом.

Основные задачи дисциплины:

- познакомить студентов с основными аксиоматическими теориями числовых систем, которые лежат в основе школьного представления о них;
- проанализировать обосновать и отработать основные числовые алгоритмы;
- познакомить студентов с некоторыми новыми методами и приемами решения задач с использованием вычислительных, контролирующих, анимационных возможности среды GeoGebra;
- проанализировать решения некоторых школьных задач и изложение учебного материала с точки зрения аксиоматических теорий числовых систем;
- способствовать развитию творческого потенциала студентов, необходимого для решения сложных исследовательских задач по числовым системам.

Достижение цели и задач изучения дисциплины обеспечивается также решением целого ряда вспомогательных задач, таких как:

- использование современных образовательных технологий;
- формирование системы предметных знаний и умений;
- активизация самостоятельной деятельности, включение в исследовательскую работу.

Дисциплина опирается на школьный и вузовский курсы алгебры и сформированные в школе и вузе компетенции, позволяющие студентам освоить дисциплину «Числовые системы».

4. Планируемые результаты обучения дисциплине

Задачи освоения	Планируемые результаты	Код результатов
дисциплины	обучения дисциплине	обучения
	(дескрипторы)	(компетенции)
Развитие способностей	Знать: аксиоматические теории	ОПК-2. Способен
усваивать формально-	числовых систем.	проектировать основные и
логические обоснования	Уметь: обосновывать школьные	дополнительные
теории числовых систем,	утверждения о числах	образовательные
знание теоретических	Владеть: навыками решения	программы и
основ школьной	алгоритмических задач о числах	разрабатывать научно-
математики чисел.		методическое обеспечение

		их реализации.
Формирование умений по	Знать: строгие доказательства	ПК-1. Способен
проектированию и	школьных утверждений о числах.	реализовывать
реализации	Уметь: обосновывать школьные	образовательные
образовательных	утверждения о числах с опорой	программы в соответствии
программ, использующих	на интуицию, наглядность,	с требованиями
образное мышление с	образное мышление, используя в	федеральных
опорой на интуицию в	том числе возможности	государственных
сочетании с	динамических сред типа	образовательных
использованием	GeoGebra.	стандартов
возможностей	Владеть: теорией числовых систем	
современных	в сочетании с навыками	
информационных	использования систем	
технологий.	динамической математики при	
	обучении математике	
Формирование	Знать вычислительные алгоритмы	ПК-3. Способен
способностей организации	для чисел, используя при этом	организовывать научно-
научно-исследовательской	GeoGebra для исключения	исследовательскую
деятельности	вычислительных трудностей,	деятельность обучающихся
обучающихся	визуализации утверждений о	
	числах, использования при	
	экспериментировании и	
	тестировании знаний.	
	Уметь сформулировать проблему в	
	математике чисел, доступную для	
	понимания и решения	
	школьниками, применять	
	анимационные возможности систем	
	динамической математики при	
	организации исследовательской	
	деятельности обучающихся.	
	Владеть навыками использования	
	систем динамической математики	
	при организации	
	исследовательской деятельности	
	обучающихся.	

5. В процессе обучения дисциплине планируется использование разнообразных видов деятельности обучающихся, организационные формы и методы обучения: лекционные и практические занятия, самостоятельная работа, индивидуальная, групповая формы организации учебной деятельности обучающихся, их сочетание и др.

Предусмотрено построение индивидуальных планов (в пределах трудоёмкости дисциплины).

Предполагается следующая работа студентов над освоением курса:

- анализ основного учебного материала курса Числовые системы с точки зрения использования систем динамической математики;
 - знакомство с системой динамической математики GeoGebra;
- решение задач по теории числовых систем с использованием анимационных возможностей среды GeoGebra;

- практика создания анимационных рисунков в среде GeoGebra при изложении учебного материала по числовым системам;
- работа с учебной литературой по числовым системам, решение задач повышенной сложности;
- подготовка докладов и сообщений, связанных с методикой решения задач школьного курса математики с использованием анимационных и динамических возможностей среды GeoGebra;
- исследовательские работы методического характера по числовым системам.
- 6. Перечень образовательных технологий: современное традиционное обучение, педагогика сотрудничества, проблемное обучение, информационно-коммуникационные технологии.

2. Организационно-методические документы 2.1. Технологическая карта обучения дисциплине «Числовые системы»

для обучающихся образовательной программы Направление подготовки: 44.04.01 Педагогическое образование **по заочной форме обучения**

(общая трудоемкость 2 з.е.)

Наименование разделов и тем дисциплины	Всего	Конт	актные ча	сы	Самостоятельная работа	Формы и методы контроля
тем днецивания	(3.e.)	всего	лекций	Практ ич.	puootu	Konipossi
РАЗДЕЛ 1. АКСИОМАТИЧЕСКИЕ ТЕОРИИ НАТУРАЛЬНЫХ, ЦЕЛЫХ И РАЦИОНАЛЬНЫХ ЧИСЕЛ	37	10	4	6	27	
Первичные понятия алгебраических систем	6.5	1.5	0.5	1	5	
Натуральные числа. Метод полной математической индукции. Обоснование свойств сложения и умножения	7	2	1	1	5	Индивидуальная — домашняя работа № 1
Отношение меньше для натуральных чисел	7	2	1	1	5	
Кольцо целых чисел. Теория делимости целых чисел.	8.5	2.5	0.5	2	6	
Поле рациональных чисел. Представление десятичными дробями.	8	2	1	1	6	Контрольная работа №1
РАЗДЕЛ 2. АКСИОМАТИЧЕСКИЕ ТЕОРИИ ДЕЙСТВИТЕЛЬНЫХ, КОМПЛЕКСНЫХ ЧИСЕЛ И КВАТЕРНИОНОВ	31	8	4	4	23	
Аксиоматическая теория действительных чисел.	8	2	1	1	6	
. Представление действительных чисел десятичными дробями.	8	2	1	1	6	Индивидуальная домашняя работа № 2
Аксиоматическая теория комплексных чисел.	8	2	1	1	6	
Кватернионы и гиперкомплексные числа. Теорема Фробениуса.	7	2	1	1	5	
ИТОГОВЫЙ КОНТРОЛЬ	4					Экзамен
Итого	72 (2)	18	8	10	50	4

2.2. Содержание основных разделов и тем дисциплины «Числовые системы»

2.2.1. Модуль «Натуральные, целые и рациональные числа

І. АКСИОМАТИЧЕСКАЯ ТЕОРИЯ НАТУРАЛЬНЫХ ЧИСЕЛ

Аксиоматическое определение натурального ряда (аксиоматика Пеано). Принцип полной математической индукции. Определение и свойства сложения и умножения натуральных чисел. Определение и свойства неравенств для натуральных чисел. Теоремы о существовании наименьшего и наибольшего элементов в подмножествах натуральных чисел. Усиленный принцип полной математической индукции. Категоричность аксиоматической теории натуральных чисел. Независимость аксиом Пеано.

II. АКСИОМАТИЧЕСКАЯ ТЕОРИЯ ЦЕЛЫХ ЧИСЕЛ

Первичные термины и аксиомы. Основные свойства кольца. Свойства целых чисел. Отношение «меньше» для целых чисел, его свойства. Непротиворечивость и категоричность аксиоматической теории целых чисел.

III. АКСИОМАТИЧЕСКАЯ ТЕОРИЯ РАЦИОНАЛЬНЫХ ЧИСЕЛ

Первичные термины и аксиомы. Основные свойства поля. Свойства рациональных чисел. Плотность поля рациональных чисел. Непротиворечивость и категоричность аксиоматической теории рациональных чисел. Представление рационального числа десятичной дробью.

4.2.2. Модуль «Действительные, комплексные числа и кватернионы»

IV. АКСИОМАТИЧЕСКАЯ ТЕОРИЯ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ

Первичные термины и аксиомы. Построение модели действительных чисел на базе десятичных дробей. Непротиворечивость и категоричность аксиоматической теории действительных чисел. Различные трактовки понятия представимости действительного числа десятичной дробью. Степени и логарифмы. Различные формулировки свойства непрерывности. Понятие о радических числах.

V. АКСИОМАТИЧЕСКАЯ ТЕОРИЯ КОМПЛЕКСНЫХ ЧИСЕЛ

Первичные термины и аксиомы. Свойства комплексных чисел. Непротиворечивость и категоричность аксиоматической теории комплексных чисел.

VI. АКСИОМАТИЧЕСКАЯ ТЕОРИЯ КВАТЕРНИОНОВ

Первичные термины и аксиомы. Свойства кватернионов.

Непротиворечивость и категоричность аксиоматической теории кватернионов.

VII. АЛГЕБРЫ С ДЕЛЕНИЕМ КОНЕЧНОГО РАНГА НАД ПОЛЕМ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ

Линейная алгебра над полем. Базис и ранг линейной алгебры. Алгебры с делением конечного ранга над полем комплексных чисел. Алгебры с делением конечного ранга над полем действительных чисел. Теорема Фробениуса.

При изложении дисциплины «Числовые системы» предусматривается использование анимационных возможностей компьютерной среды GeoGebra для устранения обременительных вычислительных трудностей, для визуализации утверждений о числах, для организации тестирования, для экспериментирования и поддержки исследовательского стиля изложения.

Программой дисциплины предусмотрены следующие виды контроля: индивидуальные домашние задания, контрольная работа. Итоговая аттестация по усвоению содержания дисциплины проводится в виде экзамена.

3. Компоненты мониторинга учебных достижений

3.1. Технологическая карта рейтинга дисциплины

	ı				
Наименование	Направление подготовки и уровень Количество				
дисциплины	образования (бакалан	зачетных			
	аспирантура) Наимен	нование программы/	единиц/кредитов		
	профиля				
Числовые	Направление подготовки 4	4.04.01 Педагогическое	2 s.e.		
системы	образование. Направленность				
Системы	образовательной программы «	Математика»			
	Квалификация (степень): Бака	лавр			
	Смежные дисциплин	ны по учебному план	У		
Предшествую	щий школьный курс матема	тики, бакалавриат педв	зуза: курсы алгебры,		
теории чис					
Последующие	: Математическая логика,	Дискретная математ	ика, Компьютерная		
алгебра.	•		, 1		
1					
Раздел 1					
Содержание	Форма работы*	Форма работы* Количество баллов 35 %			
		min	max		
Текущая работа	Индивидуальная		15		
J 1	домашняя работа №1	9	15		
	Контрольная работа				
		12 20			
	№ 1				
Итого		21	35		
Раздел 2					
Содержание	Форма работы*	Количество баллов 35 %			
		min	max		

Текущая работа	Индивидуальная домашняя работа №2	9	15
Итого		9	15
	Итоговый	раздел	
Содержание	Форма работы*	Количество баллов 40 %	
		min	max
Итоговый	экзамен	30	50
рейтинг-			
контроль			
Итого		30	50
,	ичество баллов по	min	max
ДИСЦИПЛИ (по итогам изучен		60	100

Соответствие рейтинговых баллов и академической оценки:

50 баллов – допуск к экзамену

60-72 – удовлетворительно

73-86 – хорошо

87-100 - отлично

3.2. Фонд оценочных средств (контрольно-измерительные материалы)

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

Красноярский государственный педагогический университет им. В.П. Астафьева

Институт математики, физики, информатики

Кафедра-разработчик: математики и методики обучения математике

УТВЕРЖДЕНО	ОДОБРЕНО
на заседании кафедры	на заседании научно-методического совета
Протокол №	специальности (направления подготовки)
от «» мая 2021	Протокол №
Зав. каф. МиМОМ	От мая 2021
— Л. ШирЛ.В. Шкерина	Председатель НМС С.В. Бортновский

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Для проведения текущего контроля и промежуточной аттестации Обучающихся по дисциплине «Компьютерная алгебра»

clap

Направление подготовки 44.03.01 Педагогическое образование. Направленность (профиль) образовательной программы Математика

Квалификация (степень): БАКАЛАВР Форма обучения: заочная

Составитель:

Ларин С В., профессор

Красноярск 2021

ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ НА ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Представленный фонд оценочных средств для текущей и промежуточной аттестации соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства аттестации адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 44.03.01 Педагогическое образование. Направленность (профиль) образовательной программы Математика, квалификация (степень): бакалавр, форма обучения: очная.

Оценочные средства и критерии оценивания представлены в полном объеме. Формы оценочных средств, включенных в представленный фонд, отвечают основным принципам формирования ФОС, установленных в Положении о формировании фонда оценочных средств для текущего контроля успеваемости, промежуточной и итоговой (государственной итоговой)

обучающихся образовательным программам аттестации ПО высшего программам бакалавриата, программам образования специалитета, программам магистратуры, программам подготовки научно-педагогических кадров в аспирантуре -В федеральном государственном бюджетном образовательном образования учреждении высшего «Красноярский государственный педагогический университет им. В.П. Астафьева», утвержденного приказом ректора № 297 (п) от 28.04.2018.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки по указанной программе.

Эксперт-работодатель, директор МАОУ гимназия №14 «Экономики, управления и права»

Шуляк Н.В.

27.04.2021

1. Назначение фонда оценочных средств

- 1.1. Целью создания фонда оценочных средств дисциплины «Числовые системыы» является установление соответствия учебных достижений результатам обучения требованиям запланированным основной профессиональной образовательной рабочей программы, программы дисциплины.
- 1.2. Фонд оценочных средств по дисциплине «Числовые системы» решает следующие *задачи*:
 - управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формирования компетенций, определенных в образовательных стандартах по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика, квалификация (степень) Бакалавр;
- управление процессом достижения реализации образовательных программ, определенных в виде набора компетенций выпускников;
 - оценка достижений обучающихся в процессе изучения дисциплины

«Числовые системы», с определением положительных / отрицательных результатов и планирование предупреждающих / корректирующих мероприятий;

- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения в образовательный процесс университета;
 - совершенствование самоподготовки и самоконтроля обучающихся.
- 1.3. Фонд оценочных средств разработан на основании нормативных документов:
 - федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика, квалификация (степень) Бакалавр.
- Положения о формировании фонда оценочных средств для текущего контроля успеваемости, промежуточной и итоговой аттестации обучающихся по образовательным программам высшего образования программам бакалавриата в федеральном государственном бюджетном образовательном учреждении высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева» и его филиалах.

2. Перечень компетенций с указанием этапов их формирования в процессе изучения дисциплины

2.1. Перечень компетенций, формируемых в процессе изучения дисциплины «Информационные технологии в курсе высшей алгебры»:

Общепрофессиональные компетенции:

ОПК-2. Способен проектировать основные и дополнительные образовательные программы и разрабатывать научно-методическое обеспечение их реализации.

Профессиональные компетенции:

ПК-1. Способен реализовывать образовательные программы в соответствии с требованиями федеральных государственных образовательных стандартов

ПК-3. Способен организовывать научно-исследовательскую деятельности обучающихся.

Компетенции	Этап формиро	Дисциплины, участвующие в формировании компетенции	Тип	,	ночное гво/КИМ
	вания		контроля	номе	форма
				р	
ОПК-2.	ориентир	Модуль 2 "Коммуникативный ". ИТ-технологии	Текущий	3	Инд.
Способен	овочный	в образовании и социальной сфере.	контроль		Д.р
проектировать	когнитив	Модуль 9 Предметно-методический. Основы	Текущий	2	Контр.
основные и	ный	предметно-профильной подготовки.	контроль		раб.
дополнительные	праксиол	Математическая логика. Дискретная	Текущий	4	Инд.
образовательные	огичес-	математика. Алгебра. Теория вероятностей и	контроль		Д.р
программы и	кий	математическая статистика. Теория функций			
разрабатывать	рефлекси	действительного переменного. Основы теории	Промежу	1	Экзамен
научно-	вно-	функций комплексного переменного. Модуль	точная		
методическое	оценочны	10. «Предметно-теоретический»	аттестаци		

обеспечение их	й	Математический анализ. Геометрия. Модуль 11.	Я		
реализации.		Предметно-практический Элементарная			
		математика.			
ПК-1. Способен	ориентир	Модуль 1 "Мировоззренческий".	Текущий	4	Инд.
реализовывать	овочный	Естественнонаучная картина мира. Модуль 2	контроль		Д.р
образовательные	когнитив	"Коммуникативный". ИТ-технологии в	Текущий	2	Контр.
программы в	ный	образовании и социальной сфере.	контроль		раб.
соответствии с	праксиол	Модуль 5 «Учебно-исследовательский».	Текущий	3	Инд.
требованиями	огичес-	Основы учебно-исследовательской работы.	контроль		Д.р
федеральных	кий	(профильное исследование). Учебная практика:			
государственных	рефлекси	научно-исследовательская работа Модуль 6.	Промежу	1	Экзамен
образовательных	вно-	«»теоретические основы профессиональной	точная		
стандартов	оценочны	деятельности» Теория обучения и воспитания.	аттестаци		
	й	Модуль 7 «Педагогическая интернатура»	Я		
		Проектирование урока по требованиям ФГОС.			
ПК-3. Способен	ориентир	Модуль 5 «Учебно-исследовательский».	Текущий	3	Инд.
организовывать	овочный	Основы учебно-исследовательской работы.	контроль		Д.р
научно-	когнитив	(профильное исследование). Учебная практика:	Текущий	2	Контр.
исследовательску	ный	научно-исследовательская работа Модуль 6.	контроль		раб.
ю деятельность	праксиол	«Теоретические основы профессиональной	Текущий	4	Инд.
обучающихся.	огичес-	деятельности» Теория обучения и воспитания.	контроль		Д.р
	кий	Модуль 9 «Предметно-методический». Основы			
	рефлекси	предметно-профильной подготовки.	Промежу	1	Экзамен
	вно-	Математическая логика. Дискретная	точная		
	оценочны	математика. Алгебра. Теория вероятностей и	аттестаци		
	й	математическая статистика. Теория функций	Я		
		действительного переменного. Основы теории			
		функций комплексного переменного. Модуль			
		10. Предметно-теоретический Математический			
		анализ. Геометрия.			

3. Фонд оценочных средств для промежуточной аттестации

- 3.1. Фонды оценочных средств включают: вопросы к экзамену.
- 3.2. Оценочные средства: вопросы и задания к экзамену.

Критерии оценивания по оценочному средству 1 – вопросы к экзамену

	Продвинутый уровень	Базовый уровень	Пороговый уровень
	сформированности	сформированности	сформированности
Формируемые	компетенций	компетенций	компетенций
компетенции	(87 - 100 баллов)	(73 - 86 баллов)	(60 - 72 баллов)*
	отлично/зачтено	хорошо/зачтено	удовлетворительно
			/зачтено
ОПК-2. Способен	Способен на высоком	Способен на среднем	Способен на
проектировать основные	уровне проектировать	уровне проектировать	удовлетворительном
и дополнительные	основные и	основные и	уровне проектировать
образовательные	дополнительные	дополнительные	основные и
программы и	образовательные	образовательные	дополнительные
разрабатывать научно-	программы и	программы и	образовательные
методическое	разрабатывать научно-	разрабатывать научно-	программы и
обеспечение их	методическое	методическое	разрабатывать научно-
реализации.	обеспечение их	обеспечение их	методическое
	реализации.	реализации.	обеспечение их
			реализации.

ПК-1. Способен	Способен на высоком	Способен на среднем	Способен на
реализовывать	уровне реализовывать	уровне реализовывать	удовлетворительном
образовательные	образовательные	образовательные	уровне реализовывать
программы в	программы в	программы в	образовательные
соответствии с	соответствии с	соответствии с	программы в
требованиями	требованиями	требованиями	соответствии с
федеральных	федеральных	федеральных	требованиями
государственных	государственных	государственных	федеральных
образовательных	образовательных	образовательных	государственных
стандартов	стандартов	стандартов	образовательных
			стандартов
ПК-3. Способен	Способен на на высоком	Способен на среднем	Способен на
организовывать научно-	уровне организовывать	уровне организовывать	удовлетворительном
исследовательскую	научно-	научно-	уровне организовывать
деятельность	исследовательскую	исследовательскую	научно-
обучающихся.	деятельность.	деятельность.	исследовательскую
			деятельность.

^{*}Менее 60 баллов – компетенция не сформирована

4. Фонд оценочных средств для текущего контроля успеваемости

- 4.1. Фонды оценочных средств для текущего контроля успеваемости включают в себя: контрольную работу, индивидуальную домашнюю работу.
- 4.2. Критерии оценивания по оценочным средствам для текущего контроля успеваемости:
- 4.2.1. Критерии оценивания по оценочному средству 2 контрольной работе по Числовым системам

Критерии оценивания	Количество	
	баллов (вклад	
	в рейтинг)	
Выполнены все задания контрольной работы,	5-8	
обучающийся опирался на теоретические знания и		
умения решать исследовательские задачи по числовым		
системам		
Обосновывает основные положения каждого этапа	3-5	
решения задач контрольной работы		
Аргументирует результат, проверяет верность	2-4	
найденного решения задач контрольной работы		
Решение контрольной работы сопровождает (при	2-3	
необходимости) верными и наглядными		
анимационными рисунками		
Максимальный балл (в зависимости от степени	12-20	
сложности заданий)		

4.2.2. Критерии оценивания по оценочному средству <u>3 — индивидуальной</u> домашней работе по школьной алгебре чисел.

Критерии оценивания	Количество
	баллов (вклад
	в рейтинг)
Выполнены все задачи индивидуальной домашней	3-6
работы, в том числе задачи, связанные с построением	
анимационных рисунков в среде GeoGebra	
Решения задач сопровождены комментариями,	3-4
обосновывающими основные этапы решения задачи	
Аргументирует основные выкладки, предлагает иные	2-3
варианты решения задач индивидуальной домашней	
работы	
Формулирует задачи аналогичные задачам	1-2
индивидуальной домашней работы	
Максимальный балл (в зависимости от степени	9-15
сложности заданий)	

5. Оценочные средства для аттестации

ЗАЧЕТНЫЕ ТЕСТЫ

- 1. Что такое бинарное отношение на непустом множестве A?
- 1.1. Это рефлексивное, симметричное и транзитивное отношение.
- 1.2. Это прямое произведение множеств $A \times A$.
- 1.3. Это подмножество прямого произведения множеств $A \times A$.
- 1.4. Это функция.
 - 2. Что такое бинарная операция на непустом множестве A?
- 2.1. Отображение множества A в множество A.
- 2.2. Отображение множества A на множество A .
- 2.3. Отображение множества A в множество $A \times A$.
- 2.4. Отображение множества $A \times A$ в множество A.
 - 3. Что называется натуральным рядом?
- 3.1. Система $\langle N, ' \rangle$, удовлетворяющая трем аксиомам Пеано.
- 3.2. Система $\langle N, ' \rangle$, удовлетворяющая аксиоме индукции.
- 3.3. Система (N, '), удовлетворяющая аксиомам Пеано.
- 3.4. Множество чисел, которые используются при счете.
 - 4. Как формулируется принцип полной математической индукции?
- 4.1. $(T(1)-u, (T(n)-u \Rightarrow T(n')-u)) \Rightarrow (\forall n T(n)-u)$.
- 4.2. Из предположения о том, что T(n) истинно следует, что T(n') истинно.
- 4.3. T(1) истинно и T(n) истинно и T(n') истинно.
- 4.4. Если T(1) истинно, T(n) истинно и T(n') истинно, то T(n) истинно для любого n.

- 5. Как определяется сложение натуральных чисел?
- 5.1. m+1=m', (n+m')=(n+m)' для любых $m,n\in N$.
- 5.2. $\underbrace{1+1+\ldots+1}_{m} + \underbrace{1+1+\ldots+1}_{n} = \underbrace{1+1+\ldots+1}_{m+n}$.
- 5.3. m+n'=(m+n)'.
- 5.4. m+1=m', m+n'=(m+n)' для любых $m,n\in N$.
 - 6. Как определяется умножение натуральных чисел?
- 6.1. $\underbrace{m+m+...+m}_{}=m\cdot n.$
- 6.2. $m \cdot 1 = m'$, $m \cdot n' = (m \cdot n)'$ для любых $m, n \in N$.
- 6.3. $m \cdot 1 = m'$, $m \cdot n' = m \cdot n + m$ для любых $m, n \in N$.
- 6.4. $m \cdot 1 = m$, $m \cdot n' = m \cdot n + m$ для любых $m, n \in N$.
 - 7. Как доказать, что дважды два четыре?
- 7.1. $2 \cdot 2 = 2 + 2 = 4$.
- 7.2. $2 \cdot 2 = 2 + 1' = (2 + 1)' = 3' = 4$.
- 7.3. $2 \cdot 2 = 2 \cdot 1' = 2 \cdot 1 + 2 = 2 + 2 = 2 + 1' = (2 + 1)' = (2')' = 3' = 4$.
- 7.4. $2 \cdot 2 = 2 \cdot 1' = 2 + 1' = (2 + 1)' = (2')' = 3' = 4$.
 - 8. Как формулируется усиленный принцип полной математической индукции?
- 8.1. Утверждение T(n) истинно для любого натурального числа n, если оно истинно для n=1 и из предположения о том, что оно истинно для всех натуральных чисел, меньших n, следует истинность его для n.
- 8.2. $(T(1) u, (T(m) u \Rightarrow T(n) u \partial \pi n > m)) \Rightarrow T(n) u \partial \pi \pi n \partial \sigma o o n \in N$.
- 8.3. Ели T(1) истинно и T(n) истинно для любого натурального числа, меньшего n, то T(n) истинно для любого натурального числа n.
- 8.4. Ели T(1) истинно и T(m) истинно для любого натурального числа m < n, то T(n) истинно для любого натурального числа n.
 - 9. Что называется системой целых чисел?
- 9.1. Поле, которое содержит полукольцо натуральных чисел, и всякий элемент которого представим в виде разности натуральных чисел.
- 9.2. Кольцо, которое содержит полукольцо натуральных чисел, и элементы которого исчерпываются натуральными числами, нулем и числами, противоположными натуральным.
- 9.3. Коммутативное кольцо, которое содержит полукольцо натуральных чисел, и всякий элемент которого представим в виде разности натуральных чисел.
- 9.4. Кольцо, которое содержит полукольцо натуральных чисел, и всякий элемент которого представим в виде суммы натуральных чисел.
 - 10. Что называется системой рациональных чисел?
- 10.1. Кольцо, содержащее кольцо целых чисел, и всякий элемент которого представим в виде отношения двух целых чисел.
- 10.2. Поле, содержащее кольцо целых чисел, и всякий элемент которого представим в виде разности двух целых чисел.
- 10.3. Поле, содержащее кольцо целых чисел, и всякий элемент которого представим в виде отношения двух целых чисел.

- 10.4. Множество всех дробей вида $\frac{a}{b}$, где $a,b\in Z$, $b\neq 0$.
 - 11. Что называется упорядоченным полем?
- 11.1. Система $\langle P, +, \cdot, < \rangle$, где $\langle P, +, \cdot \rangle$ есть поле, $\langle P, < \rangle$ есть линейно упорядоченное множество, и операции сложения и умножения монотонны.
- 11.2. Система $\langle P,+,\cdot,<\rangle$, где $\langle P,+,\cdot\rangle$ есть поле, $\langle P,<\rangle$ есть линейно упорядоченное множество, и для любых $a,b,c\in P$, если a< b, то a+c< b+c и $a\cdot c< b\cdot c$.
- 11.3. Система $\langle P,+,\cdot,< \rangle$, где $\langle P,+ \rangle$ коммутативная группа, $\langle P,\cdot \rangle$ коммутативная группа, для любых $a,b,c \in P$ $(a+b)\cdot c=a\cdot c+b\cdot c$, система $\langle P,< \rangle$ есть линейно упорядоченное множество и если a < b, то a+c < b+c, и если a < b и c>0, то $a\cdot c < b\cdot c$.
- 11.4. Система $\langle P,+,\cdot,< \rangle$, где $\langle P,+,\cdot \rangle$ есть поле, отношение < транзитивно, для любых $a,b\in P$ одно и только одно из трех: либо a< b , либо a=b , либо b< a и если a< b , то a+c< b+c и $a\cdot c< b\cdot c$.
 - 12. Каково наименьшее числовое поле?
- 12.1. Наименьшего числового поля не существует.
- 12.2. Поле рациональных чисел.
- 12.3. Целые числа.
- 12.4. Поле действительных чисел.
 - 13. Что называется системой действительных чисел?
- 13.1. Упорядоченное поле, удовлетворяющее аксиоме Архимеда.
- 13.2. Поле, удовлетворяющее аксиоме Архимеда и аксиоме Кантора.
- 13.3. Упорядоченное поле, в котором для любого элемента a и любого элемента b существует натуральное число n такое, что na > b, и для всякой последовательности вложенных отрезков существует элемент, принадлежащий всем отрезкам последовательности.
- 13.4. Непрерывное упорядоченное поле.
 - 14. Что такое сечение линейно упорядоченного множества?
- 14.1. Пара непустых подмножеств, пересечение которых пусто, а объединение есть данное упорядоченное множество.
- 14.2. Сечением линейно упорядоченного множество $\langle M, < \rangle$ называется упорядоченная пара подмножеств $A, B \subseteq M$ таких, что $A \neq \emptyset$, $B \neq \emptyset$; $A \cap B = \emptyset$: $A \cup B = M$: для любого $a \in A$ и любого $b \in B$ a < b.
- 14.3. Сечением линейно упорядоченного множество $\langle M, < \rangle$ называется пара подмножеств $A, B \subseteq M$ таких, что $A \neq \emptyset$, $B \neq \emptyset$; $A \cap B \neq \emptyset$: $A \cup B = M$; для любого $a \in A$ и любого $b \in B$ a < b.
- 14.4. 14.2. Сечением линейно упорядоченного множество $\langle M, < \rangle$ называется упорядоченная пара подмножеств $A, B \subseteq M$ таких, что $A \neq \emptyset$, $B \neq \emptyset$; $A \cap B = \emptyset$: $A \cup B = M$; для любого $a \in A$ и любого $b \in B$ $a \leq b$.
 - 15. Что такое граничный элемент сечения?
- 15.1. Граничным элементом сечения (A,B) называется элемент c , расположенный между A и B .
- 15.2. Граничным элементом сечения (A,B) называется элемент c такой, что для любого $a \in A$ и любого $b \in B$ имеем $a \le c \le b$.
- 15.3. Граничным элементом сечения (A, B) называется наибольший элемент

множества A.

- 15.4. Элемент c называется граничным элементом сечения (A,B), если он является наибольшим элементом множества A или наименьшим элементом множества B.
 - 16. Как определяется система действительных чисел по Дедекинду?
- 16.1. Системой действительных чисел называется поле, в котором выполняется аксиома Дедекинда.
- 16.2. Системой действительных чисел называется упорядоченной поле, в котором для всякого сечения существует граничный элемент.
- 16.3. Системой действительных чисел называется упорядоченной поле, в котором для всякого сечения существует не более одного граничного элемента.
- 16.4. Системой действительных чисел называется упорядоченной поле, в котором для всякого сечения существует не менее одного граничного элемента.
 - 17. Как определяется система действительных чисел с помощью понятия точной верхней границы?
- 17.1. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует наибольший элемент.
- 17.2. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует наименьший элемент.
- 17.3. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует точная верхняя граница.
- 17.4. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует точная нижняя граница.
 - 18. Что означает «действительное число представимо в виде десятичной дроби»?
- 18.1. Действительное число a представимо в виде десятичной дроби $\alpha=a_0,a_1a_2...$, если $a=\frac{a}{b}$ и при делении a на b получаем данную десятичную дробь.
- 18.2. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 ...$, если для любого номера n имеет место неравенство

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} \le a < a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n} \,.$$

18.3. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 ...$, если для любого номера n имеет место неравенство

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} \le a \le a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n}$$

18.4. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 ...$, если для любого номера n имеет место неравенство

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} < a < a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n}$$

- 19. Какой десятичной дробью представимо рациональное число?
- 19.1. Конечной десятичной дробью.
- 19.2. Бесконечной непериодической десятичной дробью.

- 19.3. Бесконечной периодической десятичной дробью.
- 19.4. Чисто периодической десятичной дробью.
 - 20. Какой десятичной дробью представимо иррациональное число?
- 20.1. Непериодической десятичной дробью.
- 20.2. Периодической десятичной дробью.
- 20.3. Бесконечной десятичной дробью с 9 в периоде.
- 20.4. Иррациональной десятичной дробью.
 - 21. Верно ли, что сумма двух непериодических десятичных дробей является непериодической десятичной дробью?
- 21.1. Нет.
- 21.2. Верно.
- 21.3. Иногда верно.
- 21.4. В некоторых случаях неверно.
 - 22. Верно ли, что произведение двух непериодических десятичных дробей является непериодической десятичной дробью?
- 22.1. Нет.
- 22.2. Верно.
- 22.3. Иногда верно.
- 22.4. В некоторых случаях неверно.
 - 23. Что называется системой комплексных чисел?
- 23.1. Упорядоченное поле, состоящее из чисел вида a+bi, где $a,b\in R$, i мнимая единица.
- 23.2. Упорядоченное поле, содержащее упорядоченное поле действительных чисел, мнимую единицу i такую, что $i^2 = -1$, и всякий элемент которого представим в виде a + bi, где $a, b \in R$.
- 23.3. Поле, содержащее упорядоченное поле действительных чисел, мнимую единицу i такую, что $i^2=-1$, и всякий элемент которого представим в виде a+bi, где $a,b\in R$.
- 23.4. Поле, содержащее поле действительных чисел, мнимую единицу i такую, что $i^2 = -1$, и всякий элемент которого представим в виде a + bi, где $a, b \in R$.
 - 24. Зачем строится модель кольца целых чисел?
- 24.1. Для аксиоматического построения теории целых чисел.
- 24.2. Для доказательства независимости аксиом, определяющих систему целых чисел.
- 24.3. Для доказательства непротиворечивости теории целых чисел.
- 24.4. Для доказательства того, что множество целых чисел образует кольцо.
 - 25. Как определяется сложение произвольных десятичных дробей?
- 25.1. По правилу сложения «столбиком».
- 25.2. Если даны десятичные дроби $\alpha=a_0,a_1a_2...$ и $\beta=b_0,b_1b_2...$, то $\alpha+\beta=\gamma$, где $\gamma=c_0,c_1c_2...$ и $c_0=a_0+b_0$, $c_1=a_1+b_1$, и так далее.
- 25.3. Если даны десятичные дроби $\alpha = a_0, a_1 a_2 ...$ и $\beta = b_0, b_1 b_2 ...$, причем $\alpha_n = a_0, a_1 a_2 ... a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2 ... b_n$, $\beta'_n = \beta_n + 10^{-n}$, то $\alpha + \beta$ есть та единственная десятичная дробь, которая принадлежит всем отрезкам

последовательности ([$\alpha_n + \beta_n, \alpha'_n + \beta'_n$]).

- 25.4. Если даны десятичные дроби $\alpha = a_0, a_1 a_2 ...$ и $\beta = b_0, b_1 b_2 ...$, причем $\alpha_n = a_0, a_1 a_2 ... a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2 ... b_n$, $\beta'_n = \beta_n + 10^{-n}$, то $\alpha + \beta = \gamma$ тогда и только тогда, когда для любого номера n имеем $\alpha_n + \alpha'_n \le \gamma \le \beta_n + \beta'_n$.
 - 26. Как определяется умножение десятичных дробей?
- 26.1. Если даны десятичные дроби $\alpha = a_0, a_1 a_2...$ и $\beta = b_0, b_1 b_2...$, причем $\alpha_n = a_0, a_1 a_2...a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2...b_n$, $\beta'_n = \beta_n + 10^{-n}$, то $\alpha \cdot \beta$ есть та единственная десятичная дробь, которая принадлежит всем отрезкам последовательности ([$\alpha_n \beta_n, \alpha'_n \beta'_n$]).
- 26.2. Если даны десятичные дроби $\alpha = a_0, a_1 a_2...$ и $\beta = b_0, b_1 b_2...$, причем $\alpha_n = a_0, a_1 a_2...a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2...b_n$, $\beta'_n = \beta_n + 10^{-n}$, то при $\alpha \ge 0$, $\beta \ge 0$ $\alpha \cdot \beta$ есть та единственная десятичная дробь, которая принадлежит всем отрезкам последовательности $([\alpha_n \beta_n, \alpha'_n \beta'_n])$. Если же $\alpha \ge 0$, $\beta < 0$, то $\alpha \cdot \beta$ есть дробь $-(\alpha \cdot (-\beta))$, а если $\alpha < 0$, $\beta \ge 0$, то $\alpha \cdot \beta$ есть дробь $-((-\alpha) \cdot \beta)$, если же $\alpha < 0$, $\beta < 0$, то $\alpha \cdot \beta$ есть дробь $(-\alpha) \cdot (-\beta)$).
- 26.3. Произведение находится по правилу умножения «столбиком».
- 26.4. При неотрицательных α и β произведение находится «столбиком», а в остальных случаях используем «правила знаков».
- 27. Что такое тело?
- 27.1. Тело это некоммутативное поле.
- 27.2. Тело это кольцо с делением.
- 27.3. Тело это кольцо без делителей нуля.
- 27.4. Тело это коммутативное кольцо.
 - 28. Что такое тело кватернионов?
- 28.1. Это множество чисел вида a+bi+cj+dk , где $a,b,c,d\in R$, $i^2=j^2=k^2=(ij)^2=-1$.
- 28.2. Это множество чисел вида a+bi+cj+dk, где $a,b,c,d\in R$, $i^2=j^2=k^2=(ij)^2=-1$ относительно покомпонентного сложения и умножения.
- 28.3. Тело кватернионов это такое тело, которое содержит поле комплексных чисел C, содержит мнимую единицу j, причем всякий элемент тела представим в виде a+bj, где $a,b\in C$.
- 28.4. Тело кватернионов это такое тело, которое содержит поле комплексных чисел C с мнимой единицей i, содержит новую мнимую единицу j, причем $j^2 = -1$, $(ij)^2 = -1$ и всякий элемент тела представим в виде a+bj, где $a,b \in C$.
 - 29. Всякое рациональное число представимо в виде
- 29.1. конечной десятичной дроби;
- 29.2. бесконечной десятичной дроби;
- 29.3. непериодической десятичной дроби;
- 29.4. периодической десятичной дроби.
- 30. Укажите пример поля между Q и R .
- 30.1. $\{a+b\sqrt{2} \mid a,b \in Z\}$;

302.
$$\{a+b\sqrt{2} \mid a,b \in Q\}$$
;
30.3. $\{a+b\sqrt{2} \mid a,b \in R\}$;
30.4. $\{a+b\sqrt{2} \mid a \in Q, b \in R\}$.

- 31. Выполняется ли в упорядоченном поле рациональных чисел аксиома Кантора? 31.1. Да.
- 31.2. Да, если поле рациональных чисел рассматривать как подполе поля действительных чисел.
- 31.3. Да, если рациональные числа рассматривать в виде десятичных дробей.
- 31.4. Нет.
- 32. Нарисуйте диаграмму, изображающую множества Q, R, C и множество алгебраических чисел A.
- 33. Нарисуйте диаграмму, изображающую множества N, 2Z, Z + Zi.
- 34. Нарисуйте диаграмму, изображающую множества Z + Zi, R, C.
- 35. Нарисуйте диаграмму, изображающую множество всех групп G , множество всех колец K , множество всех полей P и множество всех упорядоченных полей U .
- 36. Изобразите на одной диаграмме множество всех колец, кольцо целых чисел, множество всех полей и поле рациональных чисел.

Экзаменационные вопросы

- 1. Определение натурального ряда, независимость аксиом Пеано. Доказательство принципа полной математической индукции.
- 2. Определение сложения натуральных чисел, доказательство существования и единственности сложения.
- 3. Основные свойства сложения и умножения натуральных чисел. (3 свойства доказать).
- 4. Вспомогательные свойства, позволяющие ввести отношение «меньше» для натуральных чисел.
- 5. Определение отношения «меньше» для натуральных чисел, его основные свойства.
- 6. Определение отношения «меньше» для натуральных чисел, доказательство существования наибольшего числа для ограниченного сверху множества натуральных чисел. Линейно упорядоченное множество натуральных чисел вполне упорядочено.
- 7. Доказательство существования наименьшего числа для непустого множества натуральных чисел. Усиленный принцип полной математической индукции.
- 8. Определение системы целых чисел. Основные свойства: свойство нуля, правила знаков, коммутативность умножения целых чисел. Отсутствие делителей нуля.
- 9. Непротиворечивость теории целых чисел.
- 10. Определение системы рациональных чисел. Представление рационального числа десятичной дробью.
- 11. Определение системы действительных чисел. Включение Q в R. Существование и единственность целой части действительного числа.
- 12. Целая часть действительного числа. Представление действительных чисел десятичными дробями.
- 13. Линейно упорядоченное множество десятичных дробей. Конечные десятичные дроби. Свойство усиленной плотности.
- 14. Последовательность стягивающихся отрезков. Определение сложения и умножения десятичных дробей.
- 15. Свойство слабой монотонности сложения. Доказательство свойств сложения и умножения десятичных дробей.
- 16. Различные определения системы действительных чисел и их эквивалентность.
- 17. Определение системы комплексных чисел. Непротиворечивость теории комплексных чисел. Основные свойства поля комплексных чисел.
- 18. Кватернионы. Группа кватернионов.
- 19. Теорема Фробениуса.
- 20. Изоморфизм одноименных числовых систем.

4.3.5. Домашняя контрольная работа «30 задач на индукцию»

Подобрать и решить 30 задач на доказательства методом полной математической индукции по следующим темам:

- 1. Доказательства равенств.
- 2. Доказательства неравенств.
- 3. Доказательства делимости.
- 4. Доказательство формулы общего члена рекуррентной последовательности.
- 5. Доказательство геометрических утверждений. Срок сдачи – октябрь.

Примерный перечень задач

1. Доказательство равенств

- 1) Докажите, что сумма первых n натуральных чисел равна $\frac{n(n+1)}{2}$.
- 2) Докажите, что сумма квадратов первых n натуральных чисел равна $\frac{n(n+1)(2n+1)}{6}$.
- 3) Докажите, что $\frac{1}{1 \cdot 5} + \frac{2}{5 \cdot 9} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$.
- 4) Докажите, что $5+45+325+...+(4n+1)\cdot 5^{n-1}=n\cdot 5^n$.
- 5) Докажите, что

$$(a_1 + a_2 + \dots + a_n)^2 = a_1^2 + a_2^2 + \dots + a_n^2 + 2a_1a_2 + 2a_1a_3 + \dots + 2a_{n-1}a_n$$

6) Докажите тождества

$$\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots + \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} \cdot \frac{x-x^{2^n}}{1-x^{2^n}};$$

$$(1+x)(1+x^2)(1+x^4)\dots(1+x^{2^{n-1}}) = 1+x^2+x^3+\dots+x^{2^n-1}.$$

7) Найдите и докажите формулы:

2. Доказательство неравенств

Докажите неравенства: 1) $5^n > 7n - 3$ при любом натуральном n;

- 2) $2^{n} 1 > n(n+1)$ при любом натуральном $n \ge 7$;
- 3) $3^n \ge 2^n + n$ при любом натуральном n;
- 4) $4^n \ge 3^n + n^2$ при любом натуральном n;
- 5) $4^n > 3^n + 2^n + n$ при $n \ge 2$; 6) $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$
- 7) $\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$; 8) $|\sin n\alpha| \le n |\sin \alpha|$;

9)
$$x^n + x^{n-2} + x^{n-4} + \dots + \frac{1}{x^{n-4}} + \frac{1}{x^{n-2}} + \frac{1}{x^n} \ge n+1$$
.

10)
$$\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}$$
, $n > 1$.

3. Доказательство делимости

Докажите, что для любого натурального числа n:

1)
$$6^{2n-1} + 1 \vdots 7$$
; 2) $7^n + 3n - 1 \vdots 9$; 3) $7^{n+2} + 8^{2n+1} \vdots 57$; 4) $4^n + 15n - 1 \vdots 9$; 5) $5^n - 3^n + 2n \vdots 4$; 6) $6^{2n} + 19^n - 2^{n+1}$ кратно 17.

4. Доказательство формулы общего члена последовательности, заданной рекуррентно

- 1) Дано: $a_1 = 4$, $a_{n+1} = 3a_n 2$. Докажите, что $a_n = 3^n + 1$.
- 2) Дано: $a_1 = 1$, $a_2 = 9$, $a_{n+2} = 9a_{n+1} 20a_n$. Докажите, что $a_n = 5^n 4^n$.
- 3) Дано: $a_1=3$, $a_2=15$, $a_{n+2}=5a_{n+1}-4a_n$. Докажите, что $a_n=4^n-1$.
- 4) Дано: $a_1 = 29$, $a_2 = 85$, $a_{n+2} = 5a_{n+1} 6a_n$. Докажите, что $a_n = 2^n + 3^{n+2}$.
- 5) Последовательность Фибоначчи задана рекуррентно: $a_0=0$, $a_1=1$, $a_{n+1}=a_{n-1}+a_n$. Докажите, что: $a_1=a_{n-1}+a_n=a_{n-1}+a_n=a_{n-1}$, $a_1=a_{n-1}+a_n=a_$
- 6) Последовательность задана рекуррентно: $a_1=5$, $a_2=7$, $a_{n+1}-2a_n+a_{n-1}=0$. Выразите a_n через n .
- 7) Последовательность задана рекуррентным соотношением $a_{n+2} = 5a_{n+1} 4a_n$ с начальными значениями $a_1 = 3$, $a_2 = 15$. Докажите, что: a) все члены последовательности делятся на 3;
- b) все члены последовательности с четными номерами делятся на 5.

5. Доказательства по индукции в геометрии

- 1) На сколько частей разделят плоскость n прямых плоскости, проходящих через одну точку?
- 2) На сколько интервалов разделят прямую n ее точек?
- 3) Докажите, что n плоскостей пространства, из которых каждые три пересекаются и никакие четыре не имеют общей точки, делят пространство на $\frac{(n-1)n(n+1)}{6} + n + 1$ частей.
- 4) В плоскости проведено n окружностей так, что каждые две из них пересекаются в двух точках и никакие три не имеют общей точки. Докажите, что при этом плоскость разбивается на $n^2 n + 2$ частей.
- 5) Докажите, что сторона правильного 2^n -угольника выражается через радиус R описанной окружности выражается формулой:

$$a_n = R\sqrt{2 - \sqrt{\underbrace{2 + \sqrt{2 + \dots + \sqrt{2}}}_n}}$$

- 6) На сколько треугольников n-угольник может быть разбит своими непересекающимися диагоналями?
- 7) Докажите, что сумма внутренних углов выпуклого n-угольника равна 2d(n-2).

Используемые источники:

- 1. М.Л.Галицкий, М.М.Мошкович, С.И.Шварцбурд, Углубленное изучение курса алгебры и математического анализа. М.: «Просвещение», 1990.
- 2. Н.Я.Виленкин, Г.С.Сурвилло, Ф.С.Симонов, А.И.Кудрявцев Алгебра 9. М.: «Просвещение», 1998.
- 3. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич, Сборник задач по алгебре 8-9. М.: «Просвещение», 1997.
- 4. И.С.Соминский, Л.И.Головина, И.М.Яглом, О математической индукции. М.: «Наука», 1967.

4. Учебные ресурсы 4.1. КАРТА ЛИТЕРАТУРНОГО ОБЕСПЕЧЕНИЯ ДИСЦИПЛИНЫ

«Информационные технологии в курсе высшей алгебры»

Направление подготовки: 44.04.01 Педагогическое образование Направленность (профиль) образовательной программы

«Информационные и суперкомпьютерные технологии в математическом образовании»

Квалификация: магистр по заочной форме обучения (общая трудоемкость 2 з.е.)

Наименование	Место хранения/ электронный адрес	Кол-во экземпляров/точек доступа		
ОСНОВНАЯ ЛИТЕРАТУРА				
Ларин С.В. Числовые системы. – М.: Академия, 2001.	Научная библиотека КГПУ им. В.П. Астафьева	10		
Нечаев В.И. Числовые системы. – М.: Просвещение, 1975.	Научная библиотека КГПУ им. В.П. Астафьева	10		
. Ларин С.В. Что такое натуральные числа? Книга для учащихся. – Москва: "Просвещение", 1996. – 78 с.	Научная библиотека КГПУ им. В.П. Астафьева	10		
Ларин С.В. Числовые системы. Учебное пособие для академического бакалавриата – М. : «Юрайт», 2017. 177 с.	Научная библиотека КГПУ им. В.П. Астафьева	4		
Феферман С. Числовые системы. – М.: Наука, 1971.	Научная библиотека КГПУ им. В.П. Астафьева	1		
дополнительная лит	ЕРАТУРА			
Ларин С.В. Вычисления с помощью виртуальных геометрических инструментов. Ж. «Математика в школе», №8. 2007, с. 35-43.	Научная библиотека КГПУ им. В.П. Астафьева	1		
Ларин С.В. Целые числа и житейские представления о них. Журнал "Математика в школе", №2, 2001. с 44-49.		1		

Ларин С.В. Использование анимационных рисунков на уроках алгебры.	Научная библиотека КГПУ	1
Математика в школе №1, 2021, с. 40-49.	им. В.П. Астафьева	
Ларин С.В. Алгебра и теория чисел. Группы, кольца и поля. Учебное пособие	Научная библиотека КГПУ	2
для академического бакалавриата. – М.: Издательство Юрайт, 2018. 160 с.	им. В.П. Астафьева	
Нечаев В.И. Числовые системы. – М.: Просвещение, 1975.	Научная библиотека КГПУ	10
	им. В.П. Астафьева	
Н.Я.Виленкин, О.С.Ивашов-Мусатов, С.И.Шварцбурд Алгебра и	Научная библиотека КГПУ	10
математический анализ, 11 кл. – М.: «Просвещение», 1996.	им. В.П. Астафьева	
И.С.Соминский, Л.И.Головина, И.М.Яглом О математической индукции. – М.:		1
«Наука», 1967.		
. Кантор И.Л., Солодовников А.С. Гиперкомплексные числа. – М.: Наука, 1973,	Научная библиотека КГПУ	2
c.144.	им. В.П. Астафьева	
Понтрягин Л.С. Обобщения чисел. – М.: Наука, 1986, с.177.	Научная библиотека КГПУ	2
	им. В.П. Астафьева	_
П	1	2
Проскуряков И.В. Понятия множества, группы, кольца и поля. Теоретические	Научная библиотека КГПУ	2
основы арифметики. – в кн.: Энциклопедия элементарной математики, книга 1.	им. В.П. Астафьева	
Арифметика. – М.: ГТТЛ, 1951, с.76-252.		
Ларин С.В. Что такое числа, какие они бывают и чему служат. В сборнике	Научная библиотека КГПУ	1
«Популярные лекции по современным вопросам науки и техники для молодежи.	им. В.П. Астафьева	
Лучшие лекции 2005 года». Красноярский краевой фонд науки, Красноярск,		
2006		
Межвузовская электронная библиотека (МЭБ)	https://icdlib.nspu.ru/	Индивидуальный
		неограниченный
		доступ

Согласовано:			
	Главный библиотекарь	1000	Фортова А.А.
	(должность структурного подразделения)	(подпись)	(Фамилия И.О.)

4.2. Карта материально-технической базы дисциплины «ЧИСЛОВЫЕ СИСТЕМЫ»

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика

Квалификация: БАКАЛАВР по заочной форме обучения (общая трудоемкость 2 з.е.)

Аудитория	Оборудование	
для проведения занятий лекционного типа, занятий семинарского типа,		
курсового проектирования (выполнения курсовых работ), групповых и		
индивидуальных консультаций, текущего контроля успеваемости и		
промежуточной аттестации		
г. Красноярск, ул. Перенсона, 7, ауд. 3-15	Проектор-1шт., компьютер-12шт., маркерная доска-1шт., интерактивная доска-1шт.	
для самостоятельной работы		
г. Красноярск, ул. Перенсона, 7, ауд. 1-02 Читальный зал	Компьютер-10шт., принтер-1шт.	

Аудитория	Лицензионное программное обеспечение		
для проведения зап	для проведения занятий лекционного типа, занятий семинарского типа,		
курсового проекти	курсового проектирования (выполнения курсовых работ), групповых и		
индивидуальных	индивидуальных консультаций, текущего контроля успеваемости и		
промежуточной аттестации			
	Microsoft® Windows® 8.1 Professional (ОЕМ лицензия,		
	контракт № 20А/2015 от 05.10.2015);		
	Kaspersky Endpoint Security – Лиц сертификат №1B08-190415- 050007-883-951;		
	7-Zip - (Свободная лицензия GPL);		
	Adobe Acrobat Reader – (Свободная лицензия);		
г. Красноярск,	Google Chrome – (Свободная лицензия);		
ул. Перенсона, 7,	Mozilla Firefox – (Свободная лицензия);		
ул. Перенсона, 7, ауд. 3-15	LibreOffice – (Свободная лицензия GPL);		
	XnView – (Свободная лицензия);		
	Java – (Свободная лицензия);		
	VLC – (Свободная лицензия);		
	Живая математика 5.0 (Контракт НКС-ДБ-294/15 от 21.09.2015,		
	лицензия № 201515111);		
	GeoGebra (Свободно распространяемая в некоммерческих		
	(учебных) целях лицензия)		
для самостоятельной работы			
г. Красноярск,	Альт Образование 8 (лицензия № ААО.0006.00, договор		
ул. Перенсона, 7,	№ ДС 14-2017 от 27.12.2017		
ауд. 1-02			
Читальный зал			