МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В.П. АСТАФЬЕВА (КГПУ им. В.П. Астафьева)

Кафедра-разработчик Кафедра математики и методики обучения математике

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

КОМПЬЮТЕРНАЯ АЛГЕБРА

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика

Квалификация (степень): БАКАЛАВР

Форма обучения: очная

Рабочая программа дисциплины «Компьютерная алгебра» составлена к. ф.-м. н., профессором С.В. Лариным

Рабочая программа дисциплины актуализирована профессором кафедры математики и методики обучения математике С.В. Лариным. Протокол № _8_ от _12__ мая 2021г.

Заведующий кафедрой ______ Л.В. Шкерина

Одобрено научно-методическим советом ИМФИ КГПУ им. В.П.

Астафьева _21__мая _2021г. Протокод № 7 наука

Председатель____

С.В. Бортновский

Лист внесения изменений

Дополнения и изменения в рабочую программу на 2021/2022 учебный год

В программу вносятся следующие изменения:

- 1. Обновлены титульные листы рабочей программы и фонда оценочных средств.
- 2. Обновлена и согласована с Научной библиотекой КГПУ им. В.П. Астафьева «Карта литературного обеспечения (включая электронные ресурсы)», содержащая основную и дополнительную литературу, современные профессиональные базы данных и информационные справочные системы.

Программа пересмотрена и одобрена на заседании кафедры 12 мая 2021г., протокол № 8

Внесенные изменения утверждаю: Заведующий кафедрой Шкерина Людмила Васильевна

Одобрено НМС ИМФИ 21 мая 2021 г., протокол №7 Председатель Бортновский Сергей Витальевич

5

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Место дисциплины в структуре образовательной программы. Рабочая программа дисциплины «Компьютерная алгебра» для подготовки обучаемых по направлению подготовки 44.04.01 составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (далее ФГОС ВО), утвержденного приказом Министерства образования и науки Российской Федерации от 21 ноября 2014 г. N 1505 и профессионального стандарта «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)», утвержденного приказом Министерства труда и социальной защиты РФ от 18 октября 2013 г. №544н. Программа составлена в соответствии со стандартом РПД в КГПУ им. В.П. Астафьева, утвержденным Учёным советом университета 30.09.2015 (протокол №9). Дисциплина «Компьютерная алгебра» включена в учебный план по очной форме обучения. Код дисциплины в учебном плане – Б1.В.ДБ.05.02. Программа пересмотрена и одобрена на заседании кафедры 12 мая 2021 г., протокол № 8.

Одобрено НМС ИМФИ 21 мая 2021 г., протокол №7.

1.2. Общая трудоемкость дисциплины.

Общий объем времени, отводимый на изучение дисциплины -2 зачетных единицы или 72 часа. На аудиторную работу (контактные часы) отводится 32 часа, контроль — зачет, 4 часа, 10-й семестр.

Предусмотрено построение индивидуальных планов (в пределах трудоёмкости дисциплины).

Предполагается следующая работа студентов над освоением курса:

- анализ основного учебного материала по алгебре и теории чисел с точки зрения возможности и целесообразности использования ИТ;
 - знакомство с системой GeoGebra;
- решение задач по алгебре с использованием анимационных возможностей среды «GeoGebra»;
- практика создания анимационных рисунков в среде GeoGebra при изложении соответствующего учебного материала;
- написание рефератов, подготовка докладов и сообщений, связанных с методикой решения задач по алгебре с использованием анимационных возможностей среды GeoGebra;
 - исследовательские работы методического и научного характера.
 - 1.3. Цель и задачи освоения дисциплины:
- Ц е л ь ю изучения дисциплины является формирование у обучающихся системы понятий, знаний, умений и навыков, необходимых для использования компьютерных технологий в процессе обучения курсу алгебры в вузе с использованием программы GeoGebra,

Основные задачи дисциплины:

- познакомить студентов с основными системами динамической математики, историей их возникновения и развития, методическими возможностями их применении при решении школьных алгебраических задач, при организации и проведении исследовательской деятельности;
- проанализировать основные темы курса алгебры и теории чисел, а также числовых систем на предмет использования системы GeoGebra при обучении;
- познакомить студентов с некоторыми новыми методами и приемами решения алгебраических задач, использующими конструктивные, вычислительные, контролирующие, анимационные возможности среды GeoGebra;
- сформировать умение решать алгебраические задачи различной степени сложности, используя для этого систему GeoGebra;
- способствовать развитию творческого потенциала студентов, необходимого для решения сложных исследовательских задач по алгебре в области информатизации образования.

Достижение цели и задач изучения дисциплины обеспечивается также решением целого ряда вспомогательных задач, таких как:

- использование современных образовательных технологий;
- формирование системы предметных знаний и умений;
- активизация самостоятельной деятельности, включение в исследовательскую работу.

Дисциплина опирается на школьный и вузовский курсы алгебры и сформированные в школе и вузе компетенции, позволяющие студентам освоить дисциплину «Компьютерная алгебра».

4. Планируемые результаты обучения дисциплине

Задачи освоения	Планируемые результаты	Код результатов
дисциплины	обучения дисциплине	обучения
	(дескрипторы)	(компетенции)
Развитие способностей	Знать: основные приёмы и методы	ОПК-2. Способен
моделировать	использования систем	проектировать основные и
компьютерное	динамической математики при	дополнительные
сопровождение курса	проектировании научно-	образовательные
алгебры и теории чисел	методических и учебно-	программы и
при проектировании	методических материалов.	разрабатывать научно-
научно-методических и	Уметь: использовать	методическое обеспечение
учебно-методических	педагогически обоснованные	их реализации.
материалов	формы, методы и приемы	_
1	применения систем динамической	
	математики при проектировании	
	научно-методических и учебно-	
	методических материалов;	
	обеспечивающих формирование у	
	обучающихся образовательных	

	T	Г
	результатов, предусмотренных	
	ФГОС и (или) образовательными	
	стандартами, установленными	
	образовательной организацией.	
	Владеть: навыками осуществления	
	компьютерного сопровождения	
	при проектировании научно-	
	методических материалов	777.4
Формирование умений по	Знать: основные типы цифровых	ПК-1. Способен
проектированию и	образовательных ресурсов, в	реализовывать
реализации	первую очередь систем	образовательные
образовательных	динамической математики,	программы в соответствии
программ, использующих	используемых в процессе	с требованиями
в соответствии с	математической подготовки	федеральных
требованиями ФГОС	обучающихся, их возможности,	государственных
возможности	связанные с компьютерной	образовательных
современных	анимацией, включая такие виды	стандартов
информационных	анимации как геометрическую,	
технологий	алгебраическую, текстовую и	
	параметрическую.	
	Уметь: строить компьютерную	
	динамическую модель,	
	соответствующую условию задачи,	
	находить визуальную версию	
	решения задачи с использованием построенной модели и	
	возможностей компьютерной	
	анимации, строить математическую	
	модель визуальной версии решения	
	задачи.	
	Владеть: навыками использования	
	систем динамической математики	
	при обучении математике	
Формирование	Знать экспериментальные	ПК-3. Способен
способностей	возможности систем динамической	организовывать научно-
использовать системы	математики при организации	исследовательскую
динамической математики	исследовательской деятельности	деятельность обучающихся
при организации научно-	обучающихся.	делтельность обучающихся
исследовательской	Уметь применять анимационные	
деятельности	возможности систем динамической	
обучающихся	математики при организации	
ооучающихся	исследовательской деятельности	
	обучающихся.	
	Владеть навыками использования	
	систем динамической математики	
	при организации	
	исследовательской деятельности	
	обучающихся.	
5 В процессе	обущения писимплине плон	

5. В процессе обучения дисциплине планируется использование разнообразных видов деятельности обучающихся, организационные формы и методы обучения: лекционные и практические занятия, самостоятельная работа, индивидуальная, групповая формы организации учебной деятельности обучающихся, их сочетание и др.

Предусмотрено построение индивидуальных планов (в пределах трудоёмкости дисциплины).

Предполагается следующая работа студентов над освоением курса:

- анализ основного учебного материала курса алгебры и теории чисел с точки зрения использования систем динамической математики;
 - знакомство с системой динамической математики GeoGebra;
- решение задач по алгебре и теории чисел с использованием анимационных возможностей среды GeoGebra;
- практика создания анимационных рисунков в среде GeoGebra при изложении учебного материала по алгебре;
 - работа с учебной литературой по алгебре, решение задач повышенной сложности;
- подготовка докладов и сообщений, связанных с методикой решения задач школьного курса математики с использованием анимационных и динамических возможностей среды GeoGebra;
 - исследовательские работы методического характера.
- 6. Перечень образовательных технологий: современное традиционное обучение, педагогика сотрудничества, проблемное обучение, информационно-коммуникационные технологии.

2. Организационно-методические документы 2.1.1. Технологическая карта обучения дисциплине

Анимационно-геометрическое нахождение корней многочленов с комплексными коэффициентами **«Компьютерная** алгебра»

для обучающихся образовательной программы

Направление подготовки: 44.04.01 Педагогическое образование

(направление и уровень подготовки, шифр, профиль)

по очной форме обучения

(общая трудоемкость 2 з.е.)

Наименование разделов и	Всего		Контакт	ные часы		Самосто	Формы и методы
тем дисциплины	часов (з.е.)					ятельная работа	контроля
		всего	лекций	Лабора торн.		•	
РАЗДЕЛ 1. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В АЛГЕБРЕ ЧИСЕЛ	36 (1)	16	8	8	20		
Среда GeoGebra, ее дидактические возможности при обучении алгебре	6	2	1	1	4		
Анимационные рисунки при изучении делимости целых чисел. Деление с остатком. Алгоритны действий «столбиком» и деления «уголком. НОД и НОК. среды Живая математика	6	4	2	2	4		цуальная работа № 1
Анимационно-тестовые модели арифметических операций над действительными числами.	7	3	2	1	4	Контрольна	я работа №1
Анимационно-тестовые модели арифметических операций над комплексными числами. Корни	7	3	1	2	4		
Анимационно-геометрическое нахождение корней многочленов с комплексными коэффициентами	8	4	2	2	4		
РАЗДЕЛ 2. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В АЛГЕБРЕ МНОГОЧЛЕНОВ	36 (1)	16	8	8	16		
Анимационно-тестовые рисунки для отработки сложения, умножения, деления с остатком, алгоритм Евклида, НОД многочленов.	8	4	2	2	4		
. Анимационно-геометрическая реализация разложения многочлена по степеням х-с.	8	4	2	2	4		цуальная работа № 2
Анимационные рисунки для нахождения рациональных корней многочлена.	8	4	2	2	4		
Анимационно-геометрическая реализация метода Штурма.	8	4	2	2	4		
ИТОГОВЫЙ КОНТРОЛЬ	4		4 -			3a	чет
Итого	72 (2)	32	16	16	36		4

2.1.2. Содержание основных разделов и тем дисциплины «Компьютерная алгебра»

Дисциплина «Компьютерная алгебра» занимает одно из важных мест в подготовке бакалавра по образовательной программе 44.03.05 Педагогическое образование (с двумя профилями подготовки), направленность (профиль) образовательной программы Математика и информатика.

Посредством этой дисциплины формируются навыки применения методических возможностей систем динамической геометрии при обучении теоретическим разделам алгебры, при решении школьных и вузовских задач, закладываются основы методического мастерства, повышается профессиональной подготовки в условиях информатизации и профилизации образования. Освоение дисциплины «Компьютерная алгебра» тесно связано с изучением в педагогическом вузе таких дисциплин как, «Алгебра», «Теория системы», «Методика обучения математике», «Числовые требует согласования педагогическими учебными практиками, И содержания и порядка преподавания названных дисциплин.

Через динамику и анимацию вносится движение в преподавание математики — то, чего раньше не было и что появилось лишь благодаря развитию компьютерной техники и технологий обучения.

Анимационные рисунки делают математические понятия и утверждения наглядными, что способствует их пониманию и более прочному усвоению. Особенно поучительным является самостоятельное изготовление динамического рисунка, предполагающее глубокое проникновение в суть моделируемого процесса. Анимационные рисунки можно использовать на разных стадиях изучения материала: как наглядный дидактический материал при изучении нового, как источник задач и сопровождения их решений, как инструмент для экспериментирования и проведения научных исследований.

Обратим внимание на то, что в некоторых случаях наглядная анимационная модель алгебраического утверждения более убедительна, чем формальнологическое доказательство, и это можно использовать при работе в классах инженерной направленности.

Содержание дисциплины «Компьютерная алгебра» в части теории и практики тесно примыкает к ныне действующим учебникам по алгебре и может быть использовано обучающимися как при подготовке соответствующих лекций, так и при организации самостоятельных исследований бакалавров. Дисциплина основного модуля преследует цель: показать на конкретных примерах роль и значение анимационной составляющей в различных областях алгебры и реализацию обучения алгебре с использованием компьютерной среды GeoGebra, которая наилучшим образом подходит для этих целей.

В структуре изучаемого курса выделены два основных раздела: *раздел* 1 — «Информационные технологии в алгебре чисел», *раздел* 2 — «Информационные технологии в алгебре многочленов». При изучении курса большое внимание уделено решению алгебраических задач с использованием среды GeoGebra. Наряду с достаточно простыми задачами, необходимыми для усвоения базовых

знаний по алгебре, курс насыщен задачами повышенной трудности, для рационального решения которых требуются специализированные анимационные чертежи.

Программой дисциплины предусмотрены следующие виды контроля: индивидуальные домашние задания, контрольная работа. Итоговая аттестация по усвоению содержания дисциплины проводится в виде зачета.

Раздел 1. Информационные технологии в алгебра чисел

Рассматривается история создания и развития наиболее популярных систем динамической геометрии. Авторские коллективы создателей и основная дидактическая идеология систем динамической геометрии.

Анализируются конструктивные, исследовательские, анимационные и вычислительные возможности систем динамической геометрии как средство обучения алгебре. Рассматриваются темы школьного и вузовского курса алгебры. Обсуждается методика сопровождения их анимационными рисунками в среде GeoGebra.

Раздел 2. Информационные технологии в алгебре многочленов

Анализируются конструктивные, динамические, вычислительные возможности системы GeoGebra как средства обучения алгебре многочленов.

Сформулируем основные темы и методические рекомендации по каждому разделу дисциплины.

КОМПЬЮТЕРНАЯ АЛГЕБРА

1. Краткое введение в программу GeoGebra.

Вводная тема раздела посвящена истории создания и этапам развития СДГ. Необходимо особое внимание обратить на четыре системы динамической геометрии и продумать ответы на следующие вопросы: а) история создания и этапы развития версий одной из первых систем динамической геометрии Cabri Geometre (Франция, 1988 г.); б) история создания и этапы развития одной из самых популярных систем динамической геометрии The Geometer's Sketchpad (русскоязычные версии Живая геометрия и Живая математика) (США, 1989 г.); в) история создания и этапы развития одной из самых надежных систем динамической геометрии GeoNext (Германия, 1999 г); г) история создания и этапы развития отечественной системы динамической геометрии «Планиметрия 7-9» (Россия, 2001 г.); д) история создания и этапы развития свободно распространяемой мультиплатформенной системы динамической геометрии GeoGebra (Австрия, 2002 г.); е) методические особенности развития различных версий систем динамической геометрии. Последующие темы раздела имеют практическую направленность, сопровождается каждое занятие лабораторными работами с использованием среды GeoGebra.

Раздел 1. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В АЛГЕБРЕ ЧИСЕЛ.

- 1.1. Анимационно-геометрические модели арифметических операций на множестве чисел.
- 1.2. Анимационный рисунок для деления с остатком целых чисел.
- 1.3. Анимационное представление алгоритма деления натуральных чисел «уголком».
- 1.4. Анимационное представление алгоритма Евклида для целых чисел.
- 1.5. Анимационное нахождение линейной формы НОД.
- 1.6. Геометрическое моделирование арифметических операций над действительными числами
- 1.7. Анимационно-геометрическое деление с остатком для целых комплексных чисел.
- 1.8. Анимационное представление алгоритма Евклида для целых комплексных чисел.
- 1.9. Анимационно-графическое решение уравнений с комплексными коэффициентами.
- 1.10. Анимационно-графическое представление доказательства основной теоремы алгебры.

Раздел 2. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В АЛГЕБРЕ МНОГОЧЛЕНОВ.

- 2.1. Анимационные рисунки для сложения и умножения многочленов.
- 2.2. Анимационные рисунки при делении с остатком для многочленов.
- 2.3. Анимационное представление алгоритм Евклида для многочленов.
- 2.4. Нахождение НОД многочленов с применением деления «уголком».
- 2.5. Анимационный рисунок для нахождение пары многочленов с данным НОД и заданной последовательностью неполных частных.
- 2.6. Анимационный рисунок для нахождения линейной формы НОД двух многочленов.
- 2.7. Анимационно-геометрический аналог схемы Горнера.
- 2.8. Анимационный алгоритм нахождения рациональных корней многочленов с целыми коэффициентами.
- 2.9. Анимационный алгоритм отделения кратных множителей.
- 2.10. Анимационный алгоритм отделение действительных корней многочлена с действительными коэффициентами методом Штурма.

Методические рекомендации.

Раздел 1. Информационные технологии в алгебре чисел

Содержание раздела предусматривает обсуждение общих проблемных ситуаций связанных с: а) конструктивными возможностями GeoGebra; б) технологией создания соответствующих анимационных рисунков в среде GeoGebra; в) экспериментальными и исследовательскими возможностями GeoGebra; г) возможностями GeoGebra по обучению поиску решения задач, анимационному сопровождению доказательств теорем; д) с организацией исследовательской и экспериментальной деятельности.

Особое внимание целесообразно обратить на возможные проблемные методические ситуации, связанные с рассмотрением перечисленных выше тем раздела, методам решения многовариантных задач и задач повышенной сложности.

При обучении алгебре на базе GeoGebra потребуется сформировать умение создавать собственные инструменты, строить анимационно-геометрические модели алгебраических понятий и утверждений.

Раздел № 2. Информационные технологии в алгебре многочленов

Большинство тем раздела имеют практическую направленность, каждое занятие предполагает использование лабораторных работ на базе среды GeoGebra. Содержание раздела предусматривает обсуждение общих проблемных ситуаций связанных с: а) анимационными возможностями среды GeoGebra; б) технологией создания собственных инструментов динамических чертежей; в) дидактическими возможностями GeoGebra как эффективного средства реализации исследовательского подхода при обучении алгебре; г) возможностями GeoGebra по обучению поиску решения алгебраических задач; д) с организацией исследовательской и экспериментальной деятельности школьников при обучении алгебре.

Особое внимание рекомендуется обратить на возможные проблемные методические ситуации, связанные с обучением алгебре на базе GeoGebra.

3. Компоненты мониторинга учебных достижений

3.1. Технологическая карта рейтинга дисциплины

	Texilogioi ii teckan ka	5 - 60 Journal of Manage	1	
Наименование	Направление подгото	Количество		
дисциплины	образования (бакалав	вриат, магистратура,	зачетных	
	аспирантура) Наимен	ование программы/	единиц/кредитов	
	профиля			
Цифровые	Направление подготовки 4	4.04.01 Педагогическое	2 s.e.	
образовательные	образование. Направленность			
-	образовательной программы «			
ресурсы в курсе	суперкомпьютерные технологи			
высшей алгебры	образовании» Квалификация (степень): Магистр		
Смежные дисциплины по учебному плану				
Предшествую	ций школьный курс матема	тики, бакалавриат педв	зуза: курсы алгебры,	
	ел и числовых систем			
Последующие	: Системы динамической мат	ематики в курсе алгебр	ы вуза	
	Раздел	ı 1		
Содержание	Форма работы*	Количеств	во баллов 35 %	
		min	max	
Текущая работа	Индивидуальная	0	1.5	
3 , 1	домашняя работа №1			
	Контрольная работа	10	20	
	No1	12	20	
Итого	•	21	35	

Раздел 2				
Содержание	Форма работы*	Количество баллов 35 %		
		min	max	
Текущая работа	Индивидуальная домашняя работа №2	9 15		
Итого		9 15		
Итоговый раздел				
Содержание	Форма работы*	Количество баллов 40 %		
		min	max	
Итоговый	зачет	30	50	
рейтинг-				
контроль				
Итого		30	50	
'	ичество баллов по	min	max	
ДИСЦИПЛИ (по итогам изучен		60	100	

Соответствие рейтинговых баллов и академической оценки:

50 баллов – допуск к экзамену

60-72 – удовлетворительно

73-86 – хорошо

87-100 – отлично

3.2. Фонд оценочных средств (контрольно-измерительные материалы)

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

Красноярский государственный педагогический университет им. В.П. Астафьева

Институт математики, физики, информатики

Кафедра-разработчик: математики и методики обучения математике

УТВЕРЖДЕНО	ОДОБРЕНО
на заседании кафедры	на заседании научно-методического совета
Протокол №	специальности (направления подготовки)
от «» мая 2021	Протокол №
Зав. каф. МиМОМ	От мая 2021
— Л. ШирЛ.В. Шкерина	Председатель НМС С.В. Бортновский

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Для проведения текущего контроля и промежуточной аттестации Обучающихся по дисциплине «Компьютерная алгебра»

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика

Квалификация (степень): БАКАЛАВР Форма обучения: очная

Составитель:

Ларин С В., профессор

Красноярск 2021

clap

ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ НА ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Представленный фонд оценочных средств для текущей и промежуточной аттестации соответствует требованиям ФГОС ВО.

Предлагаемые формы и средства аттестации адекватны целям и задачам реализации основной профессиональной образовательной программы по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика, квалификация (степень): бакалавр, форма обучения: очная.

Оценочные средства и критерии оценивания представлены в полном объеме. Формы оценочных средств, включенных в представленный фонд, отвечают основным принципам формирования ФОС, установленных Положении о формировании фонда оценочных средств для текущего контроля промежуточной (государственной успеваемости, И итоговой итоговой) аттестации обучающихся образовательным программам высшего образования программам бакалавриата, программам специалитета,

программам магистратуры, программам подготовки научно-педагогических кадров в аспирантуре – в федеральном государственном бюджетном образовательном высшего образования «Красноярский учреждении В.Π. государственный педагогический им. Астафьева», университет утвержденного приказом ректора № 297 (п) от 28.04.2018.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в процессе подготовки по указанной программе.

Эксперт-работодатель, директор МАОУ гимназия №14 «Экономики, управления и права»

27.04.2021

Шуляк Н.В.

1. Назначение фонда оценочных средств

- 1.1. Целью создания фонда оценочных средств дисциплины «Информационные технологии В курсе высшей алгебры» является установление соответствия учебных достижений запланированным результатам обучения требованиям основной профессиональной образовательной программы, рабочей программы дисциплины.
- 1.2. Фонд оценочных средств по дисциплине «Информационные технологии в курсе высшей алгебры» решает следующие задачи:
 - управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формирования компетенций, определенных в образовательных стандартах по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика, квалификация (степень) Бакалавр;
- управление процессом достижения реализации образовательных программ, определенных в виде набора компетенций выпускников;
- оценка достижений обучающихся в процессе изучения дисциплины «Информационные технологии в курсе высшей алгебры», с определением положительных / отрицательных результатов и планирование предупреждающих / корректирующих мероприятий;

- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения в образовательный процесс университета;
 - совершенствование самоподготовки и самоконтроля обучающихся.
- 1.3. Фонд оценочных средств разработан на основании нормативных документов:
 - федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика, квалификация (степень) Бакалавр.
- Положения о формировании фонда оценочных средств для текущего контроля успеваемости, промежуточной и итоговой аттестации обучающихся по образовательным программам высшего образования программам бакалавриата в федеральном государственном бюджетном образовательном учреждении высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева» и его филиалах.

2. Перечень компетенций с указанием этапов их формирования в процессе изучения дисциплины

2.1. Перечень компетенций, формируемых в процессе изучения дисциплины «Информационные технологии в курсе высшей алгебры»:

Общепрофессиональные компетенции:

ОПК-2. Способен проектировать основные и дополнительные образовательные программы и разрабатывать научно-методическое обеспечение их реализации.

Профессиональные компетенции:

ПК-1. Способен реализовывать образовательные программы в соответствии с требованиями федеральных государственных образовательных стандартов ПК-3. Способен организовывать научно-исследовательскую деятельность обучающихся.

Компетенции	Этап формиро	Дисциплины, участвующие в формировании компетенции	Тип		ночное гво/КИМ
	вания		контроля	номе	форма
				р	
ОПК-2.	ориентир	Модуль 2 "Педагогическое проектирование".	Текущий	3	Инд.
Способен	овочный	Теоретические основы педагогического	контроль		Д.р
проектировать	когнитив	проектирования.	Текущий	2	Контр.
основные и	ный	Проектирование образовательных программ.	контроль		раб.
дополнительные	праксиол	Проектирование систем исследовательской	Текущий	4	Инд.
образовательные	огичес-	работы обучающихся. Модуль 4	контроль		Д.р
программы и	кий	Информационные технологии в школьном курсе	•		
разрабатывать	рефлекси	математики. Цифровые образовательные	Промежу	1	Экзамен
научно-	вно-	ресурсы в школьном курсе алгебры.	точная		
методическое	оценочны	Информационные технологии в школьном курсе	аттестаци		
обеспечение их	й	начал математического анализа. Модуль 5	Я		
реализации.		Информационные технологии в математических			
		курсах вуза. Системы динамической математики			
		в курсе геометрии вуза. Информационные			

		T	ı	1	,
		гехнологии в курсе высшей алгебры.			
		Информационные технологии в курсе			
		математического анализа. Модуль по выбору 1.			
		Компьютерное геометрическое моделирование.			
		Дискретная математика и информационные			
		технологии. Системы динамической математики			
		в геометрическом моделировании.			
		Компьютерная анимация в дискретной			
		математике. Учебная практика: технологическая			
		(проектно-технологическая) практика. Подготовка к сдаче и сдача государственного			
		экзамена. Выполнение и защита выпускной			
		квалификационной работы.			
ПК-1. Способен	ориентир	Модуль 1 "Методология исследования в	Текущий	4	Инд.
реализовывать	овочный	образовании". Модуль 3 "Основы организации	контроль	_	Д.р
образовательные	когнитив	профессиональной педагогической	Текущий	2	Контр.
программы в	ный	деятельности". Информационно-	контроль	_	раб.
соответствии с	праксиол	коммуникационные технологии в	Текущий	3	Инд.
требованиями	огичес-	профессиональной деятельности. Мониторинг	контроль		Д.р
федеральных	кий	образовательных результатов. Методология и	Контроль		~.r
государственных	рефлекси	методы научного педагогического	Промежу	1	Экзамен
образовательных	вно-	исследования. Современные подходы в	точная	_	S II.SUNIOII
стандартов	оценочны	научных педагогических исследованиях.	аттестаци		
	й	Модуль 4 Информационные технологии в	я		
	==	школьном курсе математики. Системы			
		динамической математики в школьном курсе			
		геометрии. Модуль 5 Информационные			
		технологии в математических курсах вуза.			
		Системы динамической математики в курсе			
		геометрии вуза. Модуль 6 "Информационные и			
		суперкомпьютерные технологии в			
		исследовательском обучении". Статистические			
		методы в педагогических исследованиях			
		.Суперкомпьютерные технологии в математике			
		и математическом образовании .Модуль по			
		выбору 1. Технологии проведения			
		дистанционных занятий. Технологии создания			
		учебного видео по математике и информатике.			
		Сетевые формы обучения математике и			
		информатике. Методика создания учебного			
		видео по математике и информатике. Учебная			
		практика: научно-исследовательская работа.			
		Ознакомительная практика. Производственная практика. Технологическая (проектно-			
		технологическая) практика. Научно- исследовательская работа. Педагогическая			
		практика. Преддипломная практика.			
		Подготовка к сдаче и сдача государственного			
		экзамена. Выполнение и защита выпускной			
		квалификационной работы			
ПК-3. Способен	ориентир	Модуль 1 "Методология исследования в	Текущий	3	Инд.
организовывать	овочный	образовании". Модуль 2 "Педагогическое	контроль		Д.р
научно-	когнитив	проектирование". Модуль 3 "Основы	Текущий	2	Контр.
исследовательску	ный	организации профессиональной	контроль		раб.
ю деятельность	праксиол	педагогической деятельности". Деловой	Текущий	4	Инд.
обучающихся.	огичес-	иностранный язык. Современные проблемы	контроль		Д.р
	кий	науки и образования. Теоретические основы			
	рефлекси	педагогического проектирования.	Промежу	1	Экзамен
	вно-	Проектирование образовательных программ.	точная		
	оценочны	Проектирование систем исследовательской	аттестаци		
	й	работы обучающихся. Модуль 4	Я		
		Информационные технологии в школьном			
		курсе математики. Системы динамической			

	T T	
математики в школьном курсе геометрии.		
Цифровые образовательные ресурсы в		
школьном курсе алгебры. Информационные		
технологии в школьном курсе начал		
математического анализа. Модуль 5		
Информационные технологии в		
математических курсах вуза. Системы		
динамической математики в курсе геометрии		
вуза. Информационные технологии в курсе		
высшей алгебры. Информационные технологии		
в курсе математического анализа. Системы		
динамической математики в курсе геометрии		
вуза. Модуль 6 "Информационные и		
суперкомпьютерные технологии в		
исследовательском обучении". Статистические		
методы в педагогических исследованиях.		
Суперкомпьютерные технологии в математике		
и математическом образовании. Модуль по		
выбору 1. Компьютерное геометрическое		
моделирование. Дискретная математика и		
информационные технологии. Системы		
динамической математики в геометрическом		
моделировании. Компьютерная анимация в		
дискретной математике. Учебная практика:		
научно-исследовательская работа.		
Ознакомительная практика. Производственная		
практика. Технологическая (проектно-		
` 1		
исследовательская работа. Педагогическая практика. Преддипломная практика.		
1		
Подготовка к сдаче и сдача государственного		
экзамена. Выполнение и защита выпускной		
квалификационной работы.		

3. Фонд оценочных средств для промежуточной аттестации

- 3.1. Фонды оценочных средств включают: вопросы к экзамену.
- 3.2. Оценочные средства: вопросы и задания к экзамену. Критерии оценивания по оценочному средству <u>1 – вопросы к экзамену</u>

	Продвинутый уровень	Базовый уровень	Пороговый уровень
	сформированности	сформированности	сформированности
Формируемые	компетенций	компетенций	компетенций
компетенции	(87 - 100 баллов)	(73 - 86 баллов)	(60 - 72 баллов)*
	отлично/зачтено	хорошо/зачтено	удовлетворительно
			/зачтено
ОПК-2. Способен	Способен на высоком	Способен на среднем	Способен на
проектировать основные	уровне проектировать	уровне проектировать	удовлетворительном
и дополнительные	основные и	основные и	уровне проектировать
образовательные	дополнительные	дополнительные	основные и
программы и	образовательные	образовательные	дополнительные
разрабатывать научно-	программы и	программы и	образовательные
методическое	разрабатывать научно-	разрабатывать научно-	программы и
обеспечение их	методическое	методическое	разрабатывать научно-
реализации.	обеспечение их	обеспечение их	методическое
	реализации.	реализации.	обеспечение их
			реализации.

ПК-1. Способен	Способен на высоком	Способен на среднем	Способен на
реализовывать	уровне реализовывать	уровне реализовывать	удовлетворительном
образовательные	образовательные	образовательные	уровне реализовывать
программы в	программы в	программы в	образовательные
соответствии с	соответствии с	соответствии с	программы в
требованиями	требованиями	требованиями	соответствии с
федеральных	федеральных	федеральных	требованиями
государственных	государственных	государственных	федеральных
образовательных	образовательных	образовательных	государственных
стандартов	стандартов	стандартов	образовательных
			стандартов
ПК-3. Способен	Способен на на высоком	Способен на среднем	Способен на
организовывать научно-	уровне организовывать	уровне организовывать	удовлетворительном
исследовательскую	научно-	научно-	уровне организовывать
деятельность	исследовательскую	исследовательскую	научно-
обучающихся.	деятельность.	деятельность.	исследовательскую
			деятельность.

^{*}Менее 60 баллов – компетенция не сформирована

4. Фонд оценочных средств для текущего контроля успеваемости

- 4.1. Фонды оценочных средств для текущего контроля успеваемости включают в себя: контрольную работу, индивидуальную домашнюю работу.
- 4.2. Критерии оценивания по оценочным средствам для текущего контроля успеваемости:
- 4.2.1. Критерии оценивания по оценочному средству 2 контрольной работе по элементарной алгебре

Критерии оценивания	Количество
	баллов (вклад
	в рейтинг)
Выполнены все задания контрольной работы,	5-8
обучающийся опирался на теоретические знания и	
умения решать исследовательские задачи по алгебре с	
использованием GeoGebra	
Обосновывает основные положения каждого этапа	3-5
решения задач контрольной работы	
Аргументирует результат, проверяет верность	2-4
найденного решения задач контрольной работы	
Решение контрольной работы сопровождает (при	2-3
необходимости) верными и наглядными чертежами	
Максимальный балл (в зависимости от степени	12-20
сложности заданий)	

4.2.2. Критерии оценивания по оценочному средству <u>3 — индивидуальной</u> домашней работе по школьной алгебре.

Критерии оценивания	Количество
	баллов (вклад
	в рейтинг)
Выполнены все задачи индивидуальной домашней	3-6
работы, в том числе задачи, связанные с построением	
динамических чертежей в среде GeoGebra	
Анимационные рисунки сопровождены текстовыми	3-4
комментариями, обосновывающими основные этапы	
решения задачи	
Аргументирует основные выкладки, предлагает иные	2-3
варианты решения задач индивидуальной домашней	
работы	
Формулирует задачи аналогичные задачам	1-2
индивидуальной домашней работы	
Максимальный балл (в зависимости от степени	9-15
сложности заданий)	

5. Оценочные средства для аттестации

Вопросы к экзамену

- 1. История создания и направления развития систем динамической геометрии, их основные виды.
- 2. Конструктивные, вычислительные и анимационные возможности системы динамической геометрии GeoGebra, их применение при изучении высшей алгебры.

Фонд заданий для индивидуальной домашней работы и контрольных работ

В каждом из следующих ниже заданий нужно рассказать о создании и использовании соответствующих цифровых ресурсов.

Раздел 1. Информационные технологии в алгебре чисел

- 1.1. Анимационное представление выражений с переменными
- 1.2. Анимационно-геометрическое моделирование формул
- 1.3. Анимационно-геометрическое моделирование линейных уравнений и их систем
- 1.4. Различные виды записи и геометрического изображения чисел. Рассматривается десятичная запись натуральных и целых чисел, запись рационального числа в виде обыкновенной дроби, расположение чисел на числовой прямой с их анимационно-геометрическими построениями.

- 1.5. Анимационные рисунки на делимость целых чисел. Деление с остатком.
 - 1.6. Анимационное представление алгоритма Евклида для целых чисел.
 - 1.7. Анимационное нахождение линейной формы НОД.
 - 1.8. Анимационное нахождение линейной формы НОД.
- 1.9. Десятичные дроби. С использованием анимационных рисунков рассматриваются: алгоритм записи рационального числа в виде периодической десятичной дроби и алгоритм записи периодической десятичной дроби в виде обыкновенной. Построение примеров непериодических десятичных дробей.
- 1.10. Геометрическое моделирование действий над числами. Виртуальные геометрические инструменты для выполнения четырех арифметических действий над действительными числами., а также для извлечения квадратного корня из данного действительного числа.
- 1.11. Геометрия и алгебра комплексных чисел. Анимационные рисунки для отработки действий над комплексными числами в алгебраической форме, которые можно использовать также в тестовом режиме для (само)проверки усвоения вычислительных алгоритмов.
- 1.12. Анимационные рисунки для геометрического нахождения суммы, разности, произведения и частного двух комплексных чисел, изображенных точками комплексной плоскости, анимационные рисунки для нахождения корней данной степени из данного комплексного числа.
- 1.13. Анимационный рисунок для деления с остатком целых комплексных чисел.
- 1.14. Анимационное представление алгоритма деления натуральных чисел «уголком».
- 1.15. Анимационное представление алгоритма Евклида для целых комплексных чисел.

Раздел № 2. Информационные технологии в алгебре многочленов

- 2.1. Анимационно-графическое представление линейного уравнения с двумя переменными
- 2.2. Анимационное представление решения системы двух линейных уравнений с двумя переменными
 - 2.2.1. Способ подстановки
 - 2.2.2. Способ исключения переменной
 - 2.2.3. Формулы Крамера
 - 2.2.4. Матрицы и определители
 - 2.2.5. Исследование СЛУ
 - 2.3. Использование системы САЅ
- 2.4. Анимационное представление сложения и умножения многочленов «столбиком»
 - 2.5. Анимационное представление деления многочленов «уголком»
- 2.6. Анимационно-графическое разложение многочлена по степеням x-c с помощью параллельных переносов.
 - 2.7 Основная теорема алгебры. Анимационно-геометрический алгоритм

нахождения корней многочлена с комплексными коэффициентами. Этот алгоритм позволяет для всякого конкретного многочлена с комплексными коэффициентами найти все его корни приближенно с наперед заданной точностью. На основе этого алгоритма дается наглядное доказательство основной теоремы алгебры многочленов. Рассматривается модель известного доказательства этой теоремы под названием «Дама с собачкой».

- 2.8. Анимационные рисунки для сложения и умножения многочленов.
- 2.9. Анимационные рисунки при делении с остатком для многочленов.
- 2.10. Анимационное представление алгоритма деления многочленов «уголком».
 - 2.11. Анимационное представление алгоритм Евклида для многочленов.
 - 2.12. Нахождение НОД многочленов с применением деления «уголком».
- 2.13. Анимационный рисунок для нахождение пары многочленов с данным НОД и заданной последовательностью неполных частных.
- 2.14. Анимационный рисунок для нахождения линейной формы НОД двух многочленов.
 - 2.15. Анимационный рисунок схемы Горнера.
 - 2.16. Анимационно-геометрический аналог схемы Горнера.
- 2.17. Анимационный алгоритм нахождения рациональных корней многочленов с целыми коэффициентами.
 - 2.18. Анимационный алгоритм отделения кратных множителей.
- 2.19. Анимационный алгоритм отделение действительных корней многочлена с действительными коэффициентами методом Штурма.

Ориентировочные образцы заданий для контрольных работ

- 1. Создайте Альбом анимационных рисунков в среде GeoGebra по выбранной теме.
- 2. Приведите пример учебно-исследовательской задачи с использованием анимационных рисунков, выполненных в среде GeoGebra.

6. Анализ результатов обучения и перечень корректирующих мероприятий по учебной дисциплине

Для проведения анализа усвоения учебных достижений студентов по учебной дисциплине применяются:

- составление картотеки ggb-файлов по темам школьной алгебры;
- опрос по теоретическому материалу школьного курса алгебры;
- изготовление анимационных чертежей;
- выступления с сообщениями на практических занятиях и конференциях;
- индивидуальные домашние работы..

4. Учебные ресурсы 4.1. КАРТА ЛИТЕРАТУРНОГО ОБЕСПЕЧЕНИЯ ДИСЦИПЛИНЫ

«Информационные технологии в курсе высшей алгебры»

Направление подготовки: 44.04.01 Педагогическое образование Направленность (профиль) образовательной программы

«Информационные и суперкомпьютерные технологии в математическом образовании»

Квалификация: магистр по заочной форме обучения (общая трудоемкость 2 з.е.)

Наименование	Место хранения/ электронный адрес	Кол-во экземпляров/точек доступа
ОСНОВНАЯ ЛИТЕРАТ	УРА	·
Новые педагогические и информационные технологии в системе образования	Научная библиотека КГПУ	17
[Текст] : учеб. пособие для студ. пед. вузов и системы повыш. квалиф. пед.	им. В.П. Астафьева	
кадров / ред. Е. С. Полат М.: Академия, 2009 272 с (Высшее образование).		
- Библиогр.: с. 268.		
Ларин, С. В. Компьютерная анимация в среде GeoGebra на уроках математики:	Научная библиотека КГПУ	10
учебное пособие / С.В. Ларин. Легион. – Ростов-на-Дону, 2015. – 192 с.	им. В.П. Астафьева	
. С.В. Ларин, Методика обучения математике: компьютерная анимация в среде	Научная библиотека КГПУ	10
GeoGebra. 2-е изд., исправ. и доп. Учебное пособие для вузов. – М.: «Юрайт», 2018.	им. В.П. Астафьева	
– 233 c.		
Минин, А.Я. Информационные технологии в образовании: учебное пособие /	ЭБС «Университетская	Индивидуальный
А.Я. Минин; Министерство образования и науки Российской Федерации,	библиотека онлайн»	неограниченный
Федеральное государственное бюджетное образовательное учреждение высшего		доступ
профессионального образования «Московский педагогический государственный		
университет» Москва : МПГУ, 2016 148 с. : ил Библиогр. в кн ISBN 978-		
5-4263-0464-2; То же [Электронный ресурс] URL:		
http://biblioclub.ru/index.php?page=book&id=471000		

ДОПОЛНИТЕЛЬНАЯ ЛИТІ		
Ларин С.В. Числовые системы. Учебное пособие для академического бакалавриата		
Ларин С.В. Алгебра и теория чисел. Группы, кольца и поля. Учебное пособие для а	академического бакалавриата. – N	И.: Издательство Юрайт,
2018. 160 c.		
Ларин С.В. Алгебра: Многочлены 2-е изд., испр. и доп. Учебное пособие для акаде	емического бакалавриата – М. : 1	Издательство Юрайт,
2018. 136 c.		
Ларин С.В. Вычисления с помощью виртуальных геометрических инструментов.	Научная библиотека КГПУ	1
Ж. «Математика в школе», №8. 2007, с. 35-43.	им. В.П. Астафьева	
Ларин С.В. Использование анимационных рисунков на уроках алгебры.	Научная библиотека КГПУ	1
Математика в школе №1, 2021, с. 40-49.	им. В.П. Астафьева	
Ларин С.В. Спутниковые системы как анимационно-геометрические модели	ЭБС КГПУ им. В.П.	Индивидуальный
полиномов. Mathematics and Informatics. Volume 63, Numbtr 4. Sofija, 2020. S.	Астафьева	неограниченный
441-452.		доступ
УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ		
Майер В.Р. «Живая геометрия» как средство самоконтроля при решении	ЭБС КГПУ им. В.П.	Индивидуальный
вычислительных задач по стереометрии /В.Р. Майер, Т.В. Апакина, М.Ю.	Астафьева	неограниченный
Баранова // Информационные технологии в математике и математическом		доступ
образовании: материалы II Всероссийской научно-методической конференции.		
Красноярск, 14-15 ноября 2013 г. / отв. ред. В.Р. Майер, ред. кол. КГПУ им.		
В.П. Астафьева. – Красноярск, 2013, стр. 299-302. Режим доступа:		
http://elib.kspu.ru/document/9420		
Шабанова М.В., Безумова О.Л., Ерилова Е.Н., Котова С.Н., Ларин С.В.	ЭБС КГПУ им. В.П.	Индивидуальный
Овчинникова Р.П., Патронова Н.Н., Павлова М.А., Томилова А.Е., Троицкая	Астафьева	неограниченный
О.Н., Форкунова Л.В., Ширикова Т.С.) Коллективная монография «Обучение доступ		доступ
математике с использованием возможностей GeoGebra», – М.: Издательство		
Перо, 2013. – 128 с.		
ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ И ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ		
Гарант [Электронный ресурс]: информационно-правовое обеспечение:	Научная библиотека	локальная сеть вуза
справочная правовая система. – Москва, 1992– .		
Elibrary.ru [Электронный ресурс] : электронная библиотечная система : база	http://elibrary.ru	Свободный доступ
данных содержит сведения об отечественных книгах и периодических изданиях		
по науке, технологии, медицине и образованию / Рос. информ. портал. – Москва,		

2000 – Режим доступа: http://elibrary.ru.		
East View : универсальные базы данных [Электронный ресурс] :	https://dlib.eastview.com/	Индивидуальный
периодика России, Украины и стран СНГ . – Электрон.дан. – ООО ИВИС. – 2011		неограниченный доступ
Антиплагиат. Вуз [Электронный ресурс]	https://krasspu.antiplagiat.ru/	Индивидуальный доступ
Межвузовская электронная библиотека (МЭБ)	https://icdlib.nspu.ru/	Индивидуальный неограниченный доступ
Согласовано:		

Согласовано:			
	Главный библиотекарь		Фортова А.А.
	(должность структурного подразделения)	(подпись)	(Фамилия И.О.)

4.2. Карта материально-технической базы дисциплины «КОМПЬЮТЕРНАЯ АЛГЕБРА»

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки). Направленность (профиль) образовательной программы Математика и информатика Квалификация: БАКАЛАВР по очной форме обучения (общая трудоемкость 2 з.е.)

Аудитория	Оборудование	
для проведения занятий лекционного типа, занятий семинарского типа,		
курсового проекти	курсового проектирования (выполнения курсовых работ), групповых и	
индивидуальных	индивидуальных консультаций, текущего контроля успеваемости и	
промежуточной аттестации		
г. Красноярск, ул. Перенсона, 7,	Проектор-1шт., компьютер-12шт., маркерная доска-1шт., интерактивная доска-1шт.	
ауд. 3-15		
для самостоятельной работы		
г. Красноярск, ул. Перенсона, 7,	Компьютер-10шт., принтер-1шт.	
ауд. 1-02		
Читальный зал		

Аудитория	Лицензионное программное обеспечение	
для проведения за	для проведения занятий лекционного типа, занятий семинарского типа,	
курсового проекти	курсового проектирования (выполнения курсовых работ), групповых и	
индивидуальных	к консультаций, текущего контроля успеваемости и	
•	промежуточной аттестации	
	Microsoft® Windows® 8.1 Professional (ОЕМ лицензия,	
	контракт № 20А/2015 от 05.10.2015);	
	Kaspersky Endpoint Security – Лиц сертификат №1B08-190415- 050007-883-951;	
	7-Zip - (Свободная лицензия GPL);	
	Adobe Acrobat Reader – (Свободная лицензия);	
г. Красноярск,	Google Chrome – (Свободная лицензия);	
ул. Перенсона, 7,	Mozilla Firefox – (Свободная лицензия);	
•	LibreOffice – (Свободная лицензия GPL);	
ауд. 3-15	XnView – (Свободная лицензия);	
	Java – (Свободная лицензия);	
	VLC – (Свободная лицензия);	
	Живая математика 5.0 (Контракт НКС-ДБ-294/15 от 21.09.2015, лицензия № 201515111);	
	GeoGebra (Свободно распространяемая в некоммерческих	
	(учебных) целях лицензия)	
для самостоятельной работы		
г. Красноярск,	Альт Образование 8 (лицензия № ААО.0006.00, договор	
ул. Перенсона, 7,	№ ДС 14-2017 от 27.12.2017	
ауд. 1-02		
Читальный зал		