МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Красноярский государственный педагогический университет им. В.П. Астафьева»

Институт математики, физики и информатики

(наименование института/факультета)

Кафедра-разработчик математики и методики обучения математике (наименование кафедры)

УТВЕРЖДЕНО

ОДОБРЕНО

На заседании кафедры Протокол № 8 от «07» мая 2025 <u>Шашкина Мария Борисовна</u> ФИО зав. кафедрой На заседании научно-методического совета специальности (направления подготовки) Протокол № 8 от 15 мая 2025

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся

по Числовым системам

наименование дисциплины /практики/модуля

Для профилей по направлениям подготовки: 44.03.01 Педагогическое образование, Направленность (профиль) образовательной программы Математика реализуемых на основе единых подходов к структуре и содержанию «Ядра высшего педагогического образования»

Квалификация: бакалавр

Составитель: <u>С.И. Калачева, доцент</u> (ФИО, должность)

входной контроль

- 1. Приведите примеры: натурального числа, целого не натурального, рационального не целого, иррационального числа.
- 2. Приведите пример обыкновенной дроби и запишите ее в виде периодической десятичной дроби
- 3. Приведите пример периодической десятичной дроби и запишите ее в виде обыкновенной.
- 4. Приведите пример доказательства методом полной математической индукции.
- 5. Приведите примеры конечной, периодической и непериодической десятичных дробей.
- 6. Разделите с остатком 27 (-27) на 23 (-23).
- 7. Приведите примеры сложения, вычитания, умножения и деления двух комплексных чисел.

ТЕКУЩИЙ КОНТРОЛЬ ЗАЧЕТНЫЕ ТЕСТЫ

- 1. Что такое бинарное отношение на непустом множестве A?
 - 1.1. Это рефлексивное, симметричное и транзитивное отношение.
 - 1.2. Это прямое произведение множеств $A \times A$.
 - 1.3. Это подмножество прямого произведения множеств $A \times A$.
 - 1.4. Это функция.
- 2. Что такое бинарная операция на непустом множестве А?
 - 2.1. Отображение множества A в множество A.
 - 2.2. Отображение множества A на множество A.
 - 2.3. Отображение множества A в множество $A \times A$.
 - 2.4. Отображение множества $A \times A$ в множество A.

- 3. Что называется натуральным рядом?
 - 3.1. Система $\langle N, ' \rangle$, удовлетворяющая трем аксиомам Пеано.
 - 3.2. Система $\langle N, ' \rangle$, удовлетворяющая аксиоме индукции.
 - 3.3. Система $\langle N, ' \rangle$, удовлетворяющая аксиомам Пеано.
 - 3.4. Множество чисел, которые используются при счете.
- 4. Как формулируется принцип полной математической индукции?
 - 4.1. $(T(1)-u, (T(n)-u \Rightarrow T(n')-u)) \Rightarrow (\forall n T(n)-u)$.
 - 4.2. Из предположения о том, что T(n) истинно следует, что T(n') истинно.
 - 4.3. T(1) истинно и T(n) истинно и T(n') истинно.
 - 4.4. Если T(1) истинно, T(n) истинно и T(n') истинно, то T(n) истинно для любого n.
- 5. Как определяется сложение натуральных чисел?
 - 5.1. m+1=m', (n+m')=(n+m)' для любых $m,n\in N$.
 - 5.2. $\underbrace{1+1+...+1}_{m} + \underbrace{1+1+...+1}_{n} = \underbrace{1+1+...+1}_{m+n}$.
 - 5.3. m+n'=(m+n)'.
 - 5.4. m+1=m', m+n'=(m+n)' для любых $m,n\in N$.
- 6. Как определяется умножение натуральных чисел?

6.1.
$$\underbrace{m+m+\ldots+m}_{n}=m\cdot n$$
.

6.2.
$$m \cdot 1 = m'$$
, $m \cdot n' = (m \cdot n)'$ для любых $m, n \in N$.

6.3.
$$m \cdot 1 = m'$$
, $m \cdot n' = m \cdot n + m$ для любых $m, n \in N$.

6.4.
$$m \cdot 1 = m$$
, $m \cdot n' = m \cdot n + m$ для любых $m, n \in N$.

7. Как доказать, что дважды два — четыре?

7.1.
$$2 \cdot 2 = 2 + 2 = 4$$
.

- 7.2. $2 \cdot 2 = 2 + 1' = (2 + 1)' = 3' = 4$.
- 7.3. $2 \cdot 2 = 2 \cdot 1' = 2 \cdot 1 + 2 = 2 + 2 = 2 + 1' = (2 + 1)' = (2')' = 3' = 4$.
- 7.4. $2 \cdot 2 = 2 \cdot 1' = 2 + 1' = (2 + 1)' = (2')' = 3' = 4$.
- 8. Как формулируется усиленный принцип полной математической индукции?
 - 8.1. Утверждение T(n) истинно для любого натурального числа n, если оно истинно для n=1 и из предположения о том, что оно истинно для всех натуральных чисел, меньших n, следует истинность его для n.
 - $8.2. \ (T(1) u, (T(m) u \Rightarrow T(n) u \ \partial n \ n > m)) \Rightarrow T(n) u \ \partial n \ n \in N.$
 - 8.3. Ели T(1) истинно и T(n) истинно для любого натурального числа, меньшего n, то T(n) истинно для любого натурального числа n.
 - 8.4. Ели T(1) истинно и T(m) истинно для любого натурального числа m < n , то T(n) истинно для любого натурального числа n .
- 9. Что называется системой целых чисел?
 - 9.1. Поле, которое содержит полукольцо натуральных чисел, и всякий элемент которого представим в виде разности натуральных чисел.
 - 9.2. Кольцо, которое содержит полукольцо натуральных чисел, и элементы которого исчерпываются натуральными числами, нулем и числами, противоположными натуральным.
 - 9.3. Коммутативное кольцо, которое содержит полукольцо натуральных чисел, и всякий элемент которого представим в виде разности натуральных чисел.
 - 9.4. Кольцо, которое содержит полукольцо натуральных чисел, и всякий элемент которого представим в виде суммы натуральных чисел.
- 10. Что называется системой рациональных чисел?
 - 10.1. Кольцо, содержащее кольцо целых чисел, и всякий элемент которого представим в виде отношения двух целых чисел.
 - 10.2. Поле, содержащее кольцо целых чисел, и всякий элемент которого представим в виде разности двух целых чисел.

- 10.3. Поле, содержащее кольцо целых чисел, и всякий элемент которого представим в виде отношения двух целых чисел.
- 10.4. Множество всех дробей вида $\frac{a}{b}$, где $a,b\in Z$, $b\neq 0$.

11. Что называется упорядоченным полем?

- 11.1. Система $\langle P, +, \cdot, < \rangle$, где $\langle P, +, \cdot \rangle$ есть поле, $\langle P, < \rangle$ есть линейно упорядоченное множество, и операции сложения и умножения монотонны.
- 11.2. Система $\langle P, +, \cdot, < \rangle$, где $\langle P, +, \cdot \rangle$ есть поле, $\langle P, < \rangle$ есть линейно упорядоченное множество, и для любых $a,b,c \in P$, если a < b, то a+c < b+c и $a \cdot c < b \cdot c$.
- 11.3. Система $\langle P, +, \cdot, < \rangle$, где $\langle P, + \rangle$ коммутативная группа, $\langle P, \cdot \rangle$ коммутативная группа, для любых $a,b,c \in P$ $(a+b)\cdot c = a\cdot c + b\cdot c$, система $\langle P, < \rangle$ есть линейно упорядоченное множество и если a < b, то a+c < b+c, и если a < b и c > 0, то $a \cdot c < b \cdot c$.
- 11.4. Система $\langle P, +, \cdot, < \rangle$, где $\langle P, +, \cdot \rangle$ есть поле, отношение < транзитивно, для любых $a,b \in P$ одно и только одно из трех: либо a < b, либо a = b, либо b < a и если a < b, то a + c < b + c и $a \cdot c < b \cdot c$.

12. Каково наименьшее числовое поле?

- 12.1. Наименьшего числового поля не существует.
- 12.2. Поле рациональных чисел.
- 12.3. Целые числа.
- 12.4. Поле действительных чисел.

13. Что называется системой действительных чисел?

- 13.1. Упорядоченное поле, удовлетворяющее аксиоме Архимеда.
- 13.2. Поле, удовлетворяющее аксиоме Архимеда и аксиоме Кантора.
- 13.3. Упорядоченное поле, в котором для любого элемента a и любого элемента b существует натуральное число n такое, что na > b, и для всякой последовательности вложенных отрезков существует элемент, принадлежащий всем отрезкам последовательности.

- 13.4. Непрерывное упорядоченное поле.
- 14. Что такое сечение линейно упорядоченного множества?
 - 14.1. Пара непустых подмножеств, пересечение которых пусто, а объединение есть данное упорядоченное множество.
 - 14.2. Сечением линейно упорядоченного множество $\langle M, < \rangle$ называется упорядоченная пара подмножеств $A, B \subseteq M$ таких, что $A \neq \emptyset$, $B \neq \emptyset$; $A \cap B = \emptyset$: $A \cup B = M$; для любого $a \in A$ и любого $b \in B$ a < b.
 - 14.3. Сечением линейно упорядоченного множество $\langle M, < \rangle$ называется пара подмножеств $A, B \subseteq M$ таких, что $A \neq \emptyset$, $B \neq \emptyset$; $A \cap B \neq \emptyset$: $A \cup B = M$; для любого $a \in A$ и любого $b \in B$ a < b.
 - 14.4. 14.2. Сечением линейно упорядоченного множество $\langle M, < \rangle$ называется упорядоченная пара подмножеств $A, B \subseteq M$ таких, что $A \neq \emptyset$, $B \neq \emptyset$; $A \cap B = \emptyset$: $A \cup B = M$; для любого $a \in A$ и любого $b \in B$ $a \leq b$.
- 15. Что такое граничный элемент сечения?
 - 15.1. Граничным элементом сечения (A, B) называется элемент c, расположенный между A и B.
 - 15.2. Граничным элементом сечения (A, B) называется элемент c такой, что для любого $a \in A$ и любого $b \in B$ имеем $a \le c \le b$.
 - 15.3. Граничным элементом сечения (A, B) называется наибольший элемент множества A.
 - 15.4. Элемент c называется граничным элементом сечения (A, B), если он является наибольшим элементом множества A или наименьшим элементом множества B.
- 16. Как определяется система действительных чисел по Дедекинду?
 - 16.1. Системой действительных чисел называется поле, в котором выполняется аксиома Дедекинда.
 - 16.2. Системой действительных чисел называется упорядоченной поле, в котором для всякого сечения существует граничный элемент.

- 16.3. Системой действительных чисел называется упорядоченной поле, в котором для всякого сечения существует не более одного граничного элемента.
- 16.4. Системой действительных чисел называется упорядоченной поле, в котором для всякого сечения существует не менее одного граничного элемента.
- 17. Как определяется система действительных чисел с помощью понятия точной верхней границы?
 - 17.1. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует наибольший элемент.
 - 17.2. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует наименьший элемент.
 - 17.3. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует точная верхняя граница.
 - 17.4. Системой действительных чисел называется упорядоченной поле, в котором для всякого непустого ограниченного сверху подмножества существует точная нижняя граница.
- 18. Что означает «действительное число представимо в виде десятичной дроби»?
 - 18.1. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 ...$, если $a = \frac{a}{b}$ и при делении a на b получаем данную десятичную дробь.
 - 18.2. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 \dots$, если для любого номера n имеет место неравенство $a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} \le a < a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} = \frac{1}{10^n}$.
 - 18.3. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 \dots$, если для любого номера n имеет место неравенство

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} \le a \le a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n}.$$

18.4. Действительное число a представимо в виде десятичной дроби $\alpha = a_0, a_1 a_2 ...$, если для любого номера n имеет место неравенство

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} < a < a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n}$$
.

- 19. Какой десятичной дробью представимо рациональное число?
 - 19.1. Конечной десятичной дробью.
 - 19.2. Бесконечной непериодической десятичной дробью.
 - 19.3. Бесконечной периодической десятичной дробью.
 - 19.4. Чисто периодической десятичной дробью.
- 20. Какой десятичной дробью представимо иррациональное число?
 - 20.1. Непериодической десятичной дробью.
 - 20.2. Периодической десятичной дробью.
 - 20.3. Бесконечной десятичной дробью с 9 в периоде.
 - 20.4. Иррациональной десятичной дробью.
- 21. Верно ли, что сумма двух непериодических десятичных дробей является непериодической десятичной дробью?
 - 21.1. Нет.
 - 21.2. Верно.
 - 21.3. Иногда верно.
 - 21.4. В некоторых случаях неверно.
- 22. Верно ли, что произведение двух непериодических десятичных дробей является непериодической десятичной дробью?
 - 22.1. Нет.
 - 22.2. Верно.
 - 22.3. Иногда верно.
 - 22.4. В некоторых случаях неверно.

- 23. Что называется системой комплексных чисел?
 - 23.1. Упорядоченное поле, состоящее из чисел вида a+bi, где $a,b \in R$, i-мнимая единица.
 - 23.2. Упорядоченное поле, содержащее упорядоченное поле действительных чисел, мнимую единицу i такую, что $i^2 = -1$, и всякий элемент которого представим в виде a + bi, где $a, b \in R$.
 - 23.3. Поле, содержащее упорядоченное поле действительных чисел, мнимую единицу i такую, что $i^2 = -1$, и всякий элемент которого представим в виде a + bi, где $a, b \in R$.
 - 23.4. Поле, содержащее поле действительных чисел, мнимую единицу i такую, что $i^2 = -1$, и всякий элемент которого представим в виде a + bi, где $a, b \in R$.
- 24. Зачем строится модель кольца целых чисел?
 - 24.1. Для аксиоматического построения теории целых чисел.
 - 24.2. Для доказательства независимости аксиом, определяющих систему целых чисел.
 - 24.3. Для доказательства непротиворечивости теории целых чисел.
 - 24.4. Для доказательства того, что множество целых чисел образует кольцо.
- 25. Как определяется сложение произвольных десятичных дробей?
 - 25.1. По правилу сложения «столбиком».
 - 25.2. Если даны десятичные дроби $\alpha = a_0, a_1 a_2 \dots$ и $\beta = b_0, b_1 b_2 \dots$, то $\alpha + \beta = \gamma$, где $\gamma = c_0, c_1 c_2 \dots$ и $c_0 = a_0 + b_0$, $c_1 = a_1 + b_1$, и так далее.
 - 25.3. Если даны десятичные дроби $\alpha = a_0, a_1 a_2...$ и $\beta = b_0, b_1 b_2...$, причем $\alpha_n = a_0, a_1 a_2...a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2...b_n$, $\beta'_n = \beta_n + 10^{-n}$, то $\alpha + \beta$ есть та единственная десятичная дробь, которая принадлежит всем отрезкам последовательности ([$\alpha_n + \beta_n, \alpha'_n + \beta'_n$]).

- 25.4. Если даны десятичные дроби $\alpha=a_0,a_1a_2...$ и $\beta=b_0,b_1b_2...$, причем $\alpha_n=a_0,a_1a_2...a_n$, $\alpha_n'=\alpha_n+10^{-n}$ и $\beta_n=b_0,b_1b_2...b_n$, $\beta_n'=\beta_n+10^{-n}$, то $\alpha+\beta=\gamma$ тогда и только тогда, когда для любого номера n имеем $\alpha_n+\alpha_n'\leq\gamma\leq\beta_n+\beta_n'$
- 26. Как определяется умножение десятичных дробей?
 - 26.1. Если даны десятичные дроби $\alpha = a_0, a_1 a_2 ...$ и $\beta = b_0, b_1 b_2 ...$, причем $\alpha_n = a_0, a_1 a_2 ... a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2 ... b_n$, $\beta'_n = \beta_n + 10^{-n}$, то $\alpha \cdot \beta$ есть та единственная десятичная дробь, которая принадлежит всем отрезкам последовательности ([$\alpha_n \beta_n, \alpha'_n \beta'_n$]).
 - 26.2. Если даны десятичные дроби $\alpha = a_0, a_1 a_2 ...$ и $\beta = b_0, b_1 b_2 ...$, причем $\alpha_n = a_0, a_1 a_2 ... a_n$, $\alpha'_n = \alpha_n + 10^{-n}$ и $\beta_n = b_0, b_1 b_2 ... b_n$, $\beta'_n = \beta_n + 10^{-n}$, то при $\alpha \ge 0$, $\beta \ge 0$ $\alpha \cdot \beta$ есть та единственная десятичная дробь, которая принадлежит всем отрезкам последовательности ($[\alpha_n \beta_n, \alpha'_n \beta'_n]$). Если же $\alpha \ge 0$, $\beta < 0$, то $\alpha \cdot \beta$ есть дробь $-(\alpha \cdot (-\beta))$, а если $\alpha < 0$, $\beta \ge 0$, то $\alpha \cdot \beta$ есть дробь $-((-\alpha) \cdot \beta)$, если же $\alpha < 0$, $\beta < 0$, то $\alpha \cdot \beta$ есть дробь $(-\alpha) \cdot (-\beta)$).
 - 26.3. Произведение находится по правилу умножения «столбиком».
 - 26.4. При неотрицательных α и β произведение находится «столбиком», а в остальных случаях используем «правила знаков».
 - 27. Что такое тело?
 - 27.1. Тело это некоммутативное поле.
 - 27.2. Тело это кольцо с делением.
 - 27.3. Тело это кольцо без делителей нуля.
 - 27.4. Тело это коммутативное кольцо.
- 28. Что такое тело кватернионов?
 - 28.1. Это множество чисел вида a+bi+cj+dk, где $a,b,c,d \in R$, $i^2=j^2=k^2=(ij)^2=-1$.
 - 28.2. Это множество чисел вида a+bi+cj+dk, где $a,b,c,d\in R$, $i^2=j^2=k^2=(ij)^2=-1$ относительно покомпонентного сложения и умножения.

- 28.3. Тело кватернионов это такое тело, которое содержит поле комплексных чисел C, содержит мнимую единицу j, причем всякий элемент тела представим в виде a+bj, где $a,b \in C$.
- 28.4. Тело кватернионов это такое тело, которое содержит поле комплексных чисел C с мнимой единицей i, содержит новую мнимую единицу j, причем $j^2 = -1$, $(ij)^2 = -1$ и всякий элемент тела представим в виде a+bj, где $a,b \in C$.
- 29. Всякое рациональное число представимо в виде
 - 29.1. конечной десятичной дроби;
 - 29.2. бесконечной десятичной дроби;
 - 29.3. непериодической десятичной дроби;
 - 29.4. периодической десятичной дроби.
 - 30. Укажите пример поля между О и R.

30.1.
$$\{a+b\sqrt{2} \mid a,b \in Z\}$$
;

302.
$$\{a+b\sqrt{2} \mid a,b \in Q\}$$
;

30.3.
$$\{a+b\sqrt{2} \mid a,b \in R\}$$
;

30.4.
$$\{a+b\sqrt{2} \mid a \in Q, b \in R\}$$
.

- 31. Выполняется ли в упорядоченном поле рациональных чисел аксиома Кантора?
- 31.1. Да.
- 31.2. Да, если поле рациональных чисел рассматривать как подполе поля действительных чисел.
- 31.3. Да, если рациональные числа рассматривать в виде десятичных дробей.
- 31.4. Нет.
- 32. Нарисуйте диаграмму, изображающую множества Q, R, C и множество алгебраических чисел A.

- 33. Нарисуйте диаграмму, изображающую множества N, 2Z, Z + Zi.
- 34. Нарисуйте диаграмму, изображающую множества Z + Zi, R, C.
- 35. Нарисуйте диаграмму, изображающую множество всех групп G, множество всех колец K, множество всех полей P и множество всех упорядоченных полей U.
- 36. Изобразите на одной диаграмме множество всех колец, кольцо целых чисел, множество всех полей и поле рациональных чисел.

Текущий контроль

Домашняя контрольная работа «Задачи на индукцию»

Подобрать и решить задачи на доказательства методом полной математической индукции по следующим темам:

- 1. Доказательства равенств.
- 2. Доказательства неравенств.
- 3. Доказательства делимости.
- 4. Доказательство формулы общего члена рекуррентной последовательности.
- 5. Доказательство геометрических утверждений.

Примерный перечень задач

1. Доказательство равенств

- 1) Докажите, что сумма первых n натуральных чисел равна $\frac{n(n+1)}{2}$.
- 2) Докажите, что сумма квадратов первых n натуральных чисел равна $\frac{n(n+1)(2n+1)}{6}$.

3) Докажите, что
$$\frac{1}{1\cdot 5} + \frac{2}{5\cdot 9} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$
.

4) Докажите, что
$$5+45+325+...+(4n+1)\cdot 5^{n-1}=n\cdot 5^n$$
.

5) Докажите, что

$$(a_1 + a_2 + \dots + a_n)^2 = a_1^2 + a_2^2 + \dots + a_n^2 + 2a_1a_2 + 2a_1a_3 + \dots + 2a_{n-1}a_n$$

6) Докажите тождества

$$\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots + \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} \cdot \frac{x-x^{2^n}}{1-x^{2^n}};$$

$$(1+x)(1+x^2)(1+x^4)...(1+x^{2^{n-1}}) = 1+x^2+x^3+...+x^{2^n-1}$$
.

7) Найдите и докажите формулы:

2. Доказательство неравенств

Докажите неравенства: 1) $5^n > 7n-3$ при любом натуральном n;

2)
$$2^{n} - 1 > n(n+1)$$
 при любом натуральном $n \ge 7$;

3)
$$3^n \ge 2^n + n$$
 при любом натуральном n ;

4)
$$4^n \ge 3^n + n^2$$
 при любом натуральном n ;

5)
$$4^n > 3^n + 2^n + n$$
 при $n \ge 2$; 6) $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$

7)
$$\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$$
; 8) $|\sin n\alpha| \le n |\sin \alpha|$;

9)
$$x^n + x^{n-2} + x^{n-4} + \dots + \frac{1}{x^{n-4}} + \frac{1}{x^{n-2}} + \frac{1}{x^n} \ge n+1$$
.

10)
$$\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}$$
, $n > 1$.

3. Доказательство делимости

Докажите, что для любого натурального числа n:

1)
$$6^{2n-1} + 1 \vdots 7$$
; 2) $7^{n} + 3n - 1 \vdots 9$; 3) $7^{n+2} + 8^{2n+1} \vdots 57$; 4) $4^{n} + 15n - 1 \vdots 9$

; 5)
$$5^n - 3^n + 2n = 4$$
; 6) $6^{2n} + 19^n - 2^{n+1}$ кратно 17.

4. Доказательство формулы общего члена последовательности, заданной рекуррентно

- 1) Дано: $a_1 = 4$, $a_{n+1} = 3a_n 2$. Докажите, что $a_n = 3^n + 1$.
- 2) Дано: $a_1 = 1$, $a_2 = 9$, $a_{n+2} = 9a_{n+1} 20a_n$. Докажите, что $a_n = 5^n 4^n$.
- 3) Дано: $a_1 = 3$, $a_2 = 15$, $a_{n+2} = 5a_{n+1} 4a_n$. Докажите, что $a_n = 4^n 1$.
- 4) Дано: $a_1 = 29$, $a_2 = 85$, $a_{n+2} = 5a_{n+1} 6a_n$. Докажите, что $a_n = 2^n + 3^{n+2}$.
- 5) Последовательность Фибоначчи задана рекуррентно: $a_0=0$, $a_1=1$, $a_{n+1}=a_{n-1}+a_n$. Докажите, что: a) $a_1+a_3+...+a_{2n+1}=a_{2n+2}$, b) $1+a_2+a_4+...+a_{2n}=a_{2n+1}$.
- 6) Последовательность задана рекуррентно: $a_1 = 5$, $a_2 = 7$, $a_{n+1} 2a_n + a_{n-1} = 0$. Выразите a_n через n.
- 7) Последовательность задана рекуррентным соотношением $a_{n+2} = 5a_{n+1} 4a_n$ с начальными значениями $a_1 = 3$, $a_2 = 15$. Докажите, что: a) все члены последовательности делятся на 3;
- b) все члены последовательности с четными номерами делятся на 5.

5. Доказательства по индукции в геометрии

- 1) На сколько частей разделят плоскость n прямых плоскости, проходящих через одну точку?
- 2) На сколько интервалов разделят прямую n ее точек?
- 3) Докажите, что n плоскостей пространства, из которых каждые три пересекаются и никакие четыре не имеют общей точки, делят пространство на $\frac{(n-1)n(n+1)}{6} + n + 1$ частей.
- 4) В плоскости проведено n окружностей так, что каждые две из них пересекаются в двух точках и никакие три не имеют общей точки. Докажите, что при этом плоскость разбивается на $n^2 n + 2$ частей.

- 5) Докажите, что сторона правильного 2^n -угольника выражается через радиус R описанной окружности выражается формулой: $a_n = R\sqrt{2 \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2}}}}$.
- 6) На сколько треугольников n-угольник может быть разбит своими непересекающимися диагоналями?
- 7) Докажите, что сумма внутренних углов выпуклого n-угольника равна 2d(n-2).

Вопросы к зачету

- 1. Определение натурального ряда, независимость аксиом Пеано. Доказательство принципа полной математической индукции.
- 2. Определение сложения натуральных чисел, доказательство существования и единственности сложения.
- 3. Основные свойства сложения и умножения натуральных чисел. (3 свойства доказать).
- 4. Вспомогательные свойства, позволяющие ввести отношение «меньше» для натуральных чисел.
- 5. Определение отношения «меньше» для натуральных чисел, его основные свойства.
- 6. Определение отношения «меньше» для натуральных чисел, доказательство существования наибольшего числа для ограниченного сверху множества натуральных чисел. Линейно упорядоченное множество натуральных чисел вполне упорядочено.
- 7. Доказательство существования наименьшего числа для непустого множества натуральных чисел. Усиленный принцип полной математической индукции.
- 8. Определение системы целых чисел. Основные свойства: свойство нуля, правила знаков, коммутативность умножения целых чисел. Отсутствие делителей нуля.
- 9. Непротиворечивость теории целых чисел.
- 10. Определение системы рациональных чисел. Представление рационального числа десятичной дробью.
- 11. Определение системы действительных чисел. Включение Q в R. Существование и единственность целой части действительного числа.
- 12. Целая часть действительного числа. Представление действительных чисел десятичными дробями.
- 13. Линейно упорядоченное множество десятичных дробей. Конечные десятичные дроби. Свойство усиленной плотности.
- 14. Последовательность стягивающихся отрезков. Определение сложения и умножения десятичных дробей.

- 15. Свойство слабой монотонности сложения. Доказательство свойств сложения и умножения десятичных дробей.
- 16. Различные определения системы действительных чисел и их эквивалентность.
- 17. Определение системы комплексных чисел. Непротиворечивость теории комплексных чисел. Основные свойства поля комплексных чисел.
- 18. Кватернионы. Группа кватернионов.
- 19. Теорема Фробениуса.
- 20. Изоморфизм одноименных числовых систем.