МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева»

(КГПУ им. В.П. Астафьева)

ПРЕДМЕТНО-ПРАКТИЧЕСКИЙ МОДУЛЬ Машиноведение

рабочая программа дисциплины (модуля)

Квалификация бакалавр

44.03.01 Технология с основами предпринимательства (3, 2024).plx

44.03.01 Педагогическое образование

Форма обучения заочная

Общая трудоемкость 2 ЗЕТ

Часов по учебному плану 72 Виды контроля в семестрах:

в том числе: экзамены 7

 аудиторные занятия
 22

 самостоятельная работа
 41

контактная работа во время промежуточной аттестации (ИКР)

0,33

часов на контроль 8,67

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	6 (3.2)		7 (4.1)		Итого	
Недель	11 1/6		9 5/6			
Вид занятий	УП РП		УП	РΠ	УП	РΠ
Лекции	4 4		4	4	8	8
Лабораторные	6	6	8	8	14	14
Контактная работа (промежуточная аттестация) зачеты			0,33	0,33	0,33	0,33
Итого ауд.	10	10	12	12	22	22
Контактная работа	10	10	12,33	12,33	22,33	22,33
Сам. работа	26 26		15	15	41	41
Часы на контроль			8,67	8,67	8,67	8,67
Итого	36	36	36	36	72	72

Программу составил(и): кпн, Доцент, Песковский Евгений Анатольевич

Рабочая программа дисциплины

Машиноведение

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 44.03.01 Педагогическое образование (приказ Минобрнауки России от 22.02.2018 г. № 121)

составлена на основании учебного плана:

44.03.01 Педагогическое образование

Направленность (профиль) образовательной программы Технология с основами предпринимательства

Рабочая программа одобрена на заседании кафедры

D5 Технологии и предпринимательства

Протокол от 08.05.2024 г. № 9

Зав. кафедрой Бортновский Сергей Витальевич

Председатель НМСС(С)

<u>15</u> <u>05</u> 2024 г. № <u>7</u>

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основной целью преподавания дисциплины «Машиноведение» и изучения ее студентами технологического педагогического профиля подготовки специалистов является формирование профессионально-педагогического потенциала студентов, их теоретическая и практическая подготовка для работы в качестве учителей общеобразовательной учебных заведений по образовательному направлению «технология», а также для работы организаторами и преподавателями образовательных курсов (программ) в системах дополнительного образования детей, связанных с развитием творческого технического и инженерного мышления учащихся.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
	икл (раздел) ОП: Б1.В.02					
2.1	Требования к предварительной подготов ке обучающегося:					
2.1.1	Материаловедение и новые материалы					
2.1.2	Инженерная и компьютерная графика					
2.1.3	Вводный курс прикладной механики					
2.1.4	3D-моделирование и прототипирование					
2.1.5	Теоретическая механика					
2.1.6	Вводный курс робототехники					
2.1.7	Прикладная механика					
2.1.8	В Организация проектной деятельности по технологии					
2.1.9	Мехатроника и робототехника* обязательно раздел "Образовательная робототехника"					
2.1.10	Техническое творчество и основы проектирования					
2.1.11	Основы схемотехники					
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:					
2.2.1	Передовые производственные технологии					

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫ Е В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ППК-2: Способен осуществлять проектную деятельность при создании предметной среды

ППК-2.1: Владеет знаниями в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов

Знать:							
Уровень 1	Самостоятельно и полностью правильно отвечает на учебные вопросы в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уровень 2	Самостоятельно отвечает, но имеет затруднения с ответами на некоторые у чебные вопросы в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уровень 3	3 Имеет затруднения с ответами на большинство учебных вопросов в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уметь:							
Уровень 1	Способен самостоятельно и полностью правильно теоретически объяснять применение на практике знаний в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уровень 2	Способен теоретически объяснять применение на практике основных знаний в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уровень 3	Не может без помощи преподавателя теоретически объяснять применение на практике знаний в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Владеть:							
Уровень 1	Имеет развитые навыки самостоятельного применения на практике знаний в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уровень 2	Имеет основные, базовые навыки самостоятельного применения на практике знаний в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						
Уровень 3	Имеет неразвитые навыки и испытывает затруднения с самостоятельным применением на практике знаний в области проектирования предметной среды, разработки конструкторской и технологической документации, в том числе с использованием цифровых инструментов и программных сервисов						

	емонстрирует владение методами проектирования и конструирования при создании предметной среды
Знать:	
Уровень 1	Самостоятельно и полностью правильно отвечает на теоретические вопросы по методам проектирования и конструирования при создании предметной среды
Уровень 2	Самостоятельно отвечает, но имеет затруднения с ответами на некоторые теоретические вопросы по методам проектирования и конструирования при создании предметной среды
Уровень 3	Имеет затруднения с ответами на большинство теоретических вопросов по методам проектирования и конструирования при создании предметной среды
Уметь:	
Уровень 1	Способен самостоятельно и корректно использовать разные методы проектирования и конструирования при создании предметной среды
Уровень 2	Способен самостоятельно использовать типовые методы проектирования и конструирования при создании предметной среды
Уровень 3	Способен только при помощи преподавателя использовать типовые методы проектирования и конструирования при создании предметной среды
Владеть:	
Уровень 1	Имеет опыт разнообразного практического применения методов проектирования и конструирования при создании предметной среды
Уровень 2	Имеет опыт типового применения методов проектирования и конструирования при создании предметной среды
Уровень 3	Имеет малый опыт практического применения методов проектирования и конструирования при создании предметной среды
ППК-2.3	Демонстрирует навыки разработки объектов предметной среды и новых технологических решений
Знать:	
Уровень 1	Самостоятельно планирует все этапы разработки объектов предметной среды и новых технологических решений
Уровень 2	Самостоятельно планирует отдельные этапы разработки объектов предметной среды и новых технологических решений
Уровень 3	Планирует при помощи преподавателя отдельные этапы разработки объектов предметной среды и новых технологических решений
Уметь:	
Уровень 1	Самостоятельно организует все этапы разработки объектов предметной среды и новых технологических решений
Уровень 2	Самостоятельно организует отдельные этапы разработки объектов предметной среды и новых технологических решений
Уровень 3	Организует со сторонней помощью отдельные этапы разработки объектов предметной среды и новых технологических решений
Владеть:	
Уровень 1	Имеет опыт самостоятельной разработки типовых и нестандартных объектов предметной среды и новых технологических решений
Уровень 2	Имеет опыт самостоятельной разработки типовых объектов предметной среды
Уровень 3	Имеет опыт разработки со сторонней помощью типовых объектов предметной среды

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код	Наименование разделов и тем/вид		Семестр/ Часов		Литерату	Инте	Пр.	Примеча
занятия	ятия занятия/			ции	pa	ракт.	подгот.	ние
	Раздел 1. Раздел 1. Основы							
	физико- технических							
	представлений о механизмах и							
	машинах. Общетехнические							
	вопросы конструирования							
	механизмов и машин.							
1.1	Основные технические понятия и	6	1	ППК-2.1	Л1.1 Л1.2			
	термины теории механизмов и				Л1.3			
	машин (ТММ). Типовые							
	конструкционные элементы							
	механизмов, их классификации и							
	предназначения. Основные							
	требования к изготовлению							
	механизмов. Технические							
	регламенты и стандарты. /Лек/							

	Раздел 2. Раздел 2. Структурное устройство механизмов, вопросы						
	структурного анализа и синтеза						
2.1	Структурные и кинематические характеристики механизма. Кинематические пары и их степени подвижности. Кинематические цепи. Механизм как кинематическая цепь. Степень подвижности механизма. Плоские механизмы, их разновидности. Теория групп Ассура /Лек/	6	1	ППК-2.1	Л1.1 Л1.2 Л1.3		
2.2	Основы расчета степени подвижности плоского механизма. Особые конструкционные случаи для нахождения степеней подвижности плоских механизмов. Структурный анализ и синтез плоских рычажных (стержневых) механизмов. Применение теории групп Ассура /Лаб/	6	2	ППК-2.2 ППК-2.3	Л1.1 Л1.2 Л1.3		контрольн ое задание
2.3	Пространственные кинематические цепи. Основы теории манипуляторов. Степени подвижности манипуляторов. Вопросы применения манипуляторов. /Лек/	6	1				
2.4	Основы теории манипуляторов. Структурный анализ манипуляторов Расчет степеней подвижности и маневренности манипуляторов. /Лаб/	6	2				
2.5	Передачи, преобразующие параметры вращения. Фрикционные передачи. Зубчатые передачи. Разновидности зубчатых передач. Рядовые и ступенчатые зубчатые механизмы. Структурный анализ плоских зубчатых механизмов. /Лек/	6	1				
2.6	Структурный анализ зубчатых механизмов. Расчет степеней подвижности механизмов с неподвижными и подвижными осями. /Лаб/ Раздел 3.2-2	6	2				
3.1	Раздел 3.2-2 Элементы кинематического анализа зубчатых механизмов. Передаточные отношения и передаточные числа. Теория расчета передаточных отношений зубчатых механизмов с неподвижными и подвижными осями. /Лек/	7	2	ППК-2.1	Л1.1 Л1.2 Л1.3		
3.2	Кинематический анализа зубчатых механизмов с подвижными и неподвижными осями. Расчет передаточных отношений /Лаб/ Раздел 4. Раздел 3. Элементы теории	7	4	ППК-2.2	Л1.1 Л1.2 Л1.3		контрольн ое задание
	Раздел 4. Раздел 3. Элементы теории кинематического анализа механизмов в обобщенных координатах.						

4.1	Понятие обобщённых координат. Использование методов обобщённых координат для исследования движения механизмов. Аналитические методы кинематического анализа рычажных механизмов в обобщённых координатах. Аналоги скоростей и ускорений /Лек/	7	2	ППК-2.1	Л1.1 Л1.2 Л1.3		
4.2	Применение аналитических методов кинематического анализа рычажных механизмов в обобщённых координатах. Кинематический анализ методом замкнутых векторных контуров (метод Зиновьева). Нахождение аналогов скоростей и ускорений. /Лаб/	7	4	ППК-2.2 ППК-2.3	Л1.1 Л1.2 Л1.3		контрольн ое задание
	Раздел 5. Самостоятельная работа студента по темам дисциплины в 6 семестре						
5.1	Самостоятельная работа студента по темам дисциплины в 6 семестре /Ср/	6	26	ППК-2.3	Л1.1 Л1.2 Л1.3		
	Раздел 6. Самостоятельная работа студента по темам дисциплины в 7 семестре						
6.1	Самостоятельная работа студента по темам дисциплины в 7 семестре /Ср/	7	15	ППК-2.3	Л1.1 Л1.2 Л1.3		
	Раздел 7. Промежуточная аттестация (итоговый экзамен по дисциплине) - 7 семестр						
7.1	Промежуточная аттестация (экзамен по дисциплине) - 7 семестр /KP3/	7	0,33		Л1.1 Л1.2 Л1.3		Вопросы к экзамену

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ (ОЦЕНОЧНЫЕ СРЕДСТВА)

для текущего контроля успеваемости, промежуточной аттестации

5.1. Контрольные вопросы и задания

Входной контроль – собеседования (устные опросы):

- системы измерений физико-математических величин;
- представления о системах отсчета системах координат;
- понятия дифференциального и интегрального исчислений.

Текущий контроль:

- Контрольная работа 1 Структурный анализ механизмов по Ассуру.
- Контрольная работа 2 Кинематический анализ многозвенных рычажных механизмов по методу замкнутых векторных контуров (методу В.А.Зиновьева)

5.2. Темы письменных работ

5.3. Оценочные материалы (оценочные средства)

Теоретические вопросы к зачету и вопросы к экзамену.

- 1. Базовые термины и понятия курса теории машин и механизмов деталь, звено, узел, механизм, машина. Понятие механических соединений. Классификация (виды) соединений (подвижные неподвижные, разъёмные неразъёмные). Примеры механических соединений разных видов и функционального предназначения (шарниры (виды шарниров), жёсткая (глухая) заделка, ползунные, кулачковые, резъбовые, зубчатые, фрикционные соединения и др.).
- 2. Понятие кинематики как научно-предметной области, раздела физики. Основные физические величины, изучением, исследованием и нахождением которых занимаются при решении кинематических задач. Представление радиус-вектора, скорости, ускорения и пройденного материальной точкой пути в декартовой системе координат. Математический смысл скорости.
- 3. Естественный способ задания движения. Дуговая координата. Естественный трехгранник и его оси. Нахождение скорости, ускорения и пройденного пути при естественном способе задания движения общий вывод уравнения скорости, ускорения и пройденного пути. Тангенциальное и нормальное ускорения.
- 4. Физические модели материальной точки и (абсолютно) твердого тела. Понятие степеней свободы в механике.

Аналитический (расчетный) смысл степеней свободы. Свободные тела. Понятие связей. Реакции связей. Определение (обоснование) количества степеней свободы материальной точки в пространстве. Определение (обоснование) количества степеней свободы свободного твердого тела в пространстве.

- 5. Кинематическое понятие звеньев механизма. Механизм как система звеньев. Входные (ведущие; начальные), промежуточные (соединительные), выходные (ведомые; исполнительные; рабочие) звенья. Типология наименований звеньев в механизмах (основные типовые названия в зависимости от предназначения, конструкционных и функциональных особенностей). Понятие кинематических пар.
- 6. Понятие степени подвижности кинематической пары. Понятие класса кинематической пары. Связь между степенью подвижности и классом кинематической пары. Классификация кинематических пар по степеням подвижности (классам кинематических пар). Высшие и низшие кинематические пары. Примеры кинематических пар разных классов и видов.
- 7. Понятие кинематических цепей. Механизм как кинематическая цепь. Классификации видов кинематических цепей (простая сложная, замкнутая незамкнутая, плоская пространственная). Практические примеры разных видов кинематических цепей механизмов.
- 8. Структурная схема механизма. Понятие степени подвижности механизма. Практический (технический) смысл степени подвижности механизма. Принципы и методы расчета степеней подвижности пространственных и плоских механизмов формулы Сомова-Малышева и Чебышева. Избыточные (пассивные) связи. Местные подвижности.
- 9. Структурный анализ механизмов. Анализ плоских рычажных механизмов. Понятие групп Ассура. Степень подвижности групп Ассура. Условия (аналитические требования) для выделения (нахождения) групп Ассура в механизме. Характеристические формулы, устанавливающие соотношения элементов групп Ассура между собой (для структурного анализа).
- 10. Классификация (систематизация) групп Ассура. Понятия классов, порядков групп Ассура по классификации Л.В.Ассура И.И.Артоболевского. Примеры групп Ассура разных классов и порядков, содержащих кинематические пары разных видов.
- 11. Понятие класса механизма в структурном анализе по Ассуру. Понятие начального (исходного) механизма 1-го класса. Принципы, правила, алгоритмы структурного анализа, составления и записи структурной формулы строения механизма.
- 12. Плоские механизмы с высшими кинематическими парами, примеры таких механизмов. Замена высших кинематических пар низшими в структурном анализе по Ассуру принципы, правила, алгоритмы замены. Примеры плоских механизмов с высшими кинематическими парами и замены в них высших пар низшими.
- 13. Фрикционные передачи. Ременные передачи. Зубчатые передачи (механизмы). Разновидно сти зубчатых механизмов. Планетарные механизмы. Определение (нахождение) степеней подвижности зубчатых механизмов.
- 14. Кинематика зубчатых механизмов. Передаточные отношения и передаточные числа зубчатых механизмов. Кинематический анализ механизмов с неподвижными осями, анализ рядных и ступенчатых зубчатых механизмов. Кинематический анализ планетарных механизмов. Метод обращения движения (метод Виллиса).
- 15. Манипуляторы. Кинематические цепи манипуляторов. Основные конструкционные разновидности манипуляционных механизмов и их структурные элементы. Структурный анализ манипуляторов. Определение (нахождение) степени подвижности и маневренности манипулятора.
- 16. Кинематическое понятие звеньев механизма. Механизм как система звеньев. Входные (ведущие; начальные), промежуточные (соединительные), выходные (ведомые; исполнительные; рабочие) звенья. Типология наименований звеньев в механизмах (основные типовые названия в зависимости от предназначения, конструкционных и функциональных особенностей). Понятие кинематических пар.

(6. УЧЕБНО-МЕТОДИЧ ЕСКОЕ И ИНФОРМАЦИОННОЕ ОБ ЕСПЕЧ ЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
	6.1. Рекомендуемая литература							
	6.1.1. Основная литература							
	Авторы, составители	Заглавие	Издательство, год	Адрес				
Л1.1	Тигров В. П.		государственный	https://biblioclub.ru/inde x.php? page=book&id=577346				

	Авторы, составители	Заглавие	Издательство, год	Адрес
Л1.2	Дюндик О. С., Згонник И. П., Федорова М. А.	Кинетостатика механизмов в машиноведении: учебное пособие	Омск: Омский государственный технический университет (ОмГТУ), 2020	https://biblioclub.ru/inde x.php? page=book&id=682252
Л1.3	Федорова М. А., Дюндик О. С., Пеньков И. А., Сыркин В. В.		Омск: Омский государственный технический университет (ОмГТУ), 2019	https://biblioclub.ru/inde x.php? page=book&id=682262

6.3.1 Перечень программного обеспечения

- 1. Microsoft® Windows® 8.1 Professional (ОЕМ лицензия, контракт № 20A/2015 от 05.10.2015);
- 2. Kaspersky Endpoint Security Лиц сертификат №1В08-190415-050007-883-951;
- 3. 7-Zip (Свободная лицензия GPL);
- 4. Adobe Acrobat Reader (Свободная лицензия);
- 5. Google Chrome (Свободная лицензия);
- 6. Mozilla Firefox (Свободная лицензия);
- 7. LibreOffice (Свободная лицензия GPL);
- 8. XnView (Свободная лицензия);
- 9. Java (Свободная лицензия);
- 10. VLC (Свободная лицензия);

6.3.2 Перечень профессиональных баз данных и информационных справочных систем

Elibrary.ru: электронная библиотечная система: база данных содержит сведения об отечественных книгах и периодических изданиях по науке, технологии, медицине и образованию. Адрес: http://elibrary.ru Режим доступа: Свободный доступ; Электронно-библиотечная система «Университетская библиотека онлайн». Адрес: https://biblioclub.ru Режим доступа: Индивидуальный неограниченный доступ;

Электронно-библиотечная система издательства «ЛАНЬ». Адрес: e.lanbook.com Режим доступа: Индивидуальный неограниченный доступ;

Образовательная платформа «Юрайт». Адрес: https://urait.ru Режим доступа: Индивидуальный неограниченный доступ; ИС Антиплагиат: система обнаружения заимствований. Адрес: https://krasspu.antiplagiat.ru Режим доступа: Индивидуальный неограниченный доступ;

Консультант Плюс /Электронный ресурс/:справочно – правововая система. Адрес: Научная библиотека Режим доступа: Локальная сеть вуза;

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Перечень учебных аудиторий и помещений закрепляется ежегодным приказом «О закреплении аудиторий и помещений в Федеральном государственном бюджетном образовательном учреждении высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева на текущий год» с обновлением перечня программного обеспечения и оборудования в соответствии с требованиями ФГОС ВО, в том числе:

- 1. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля успеваемости и промежуточной аттестации
- 2. Помещения для самостоятельной работы обучающихся
- 3. Помещения для хранения и профилактического обслуживания учебного оборудования
- 4. Перечень лабораторий.

8. МЕТОДИЧ ЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

В организационно-методическую структуру курса дисциплины «Машиноведение» включены следующие аудиторные (контактные) формы организации учебных занятий студентов: лекции и лабораторные практикумы (для практического освоения материала и выполнения самостоятельных учебных заданий обучающимися). Поскольку образование осуществляется в заочной форме, то в образовательной программе предусмотрен значительный объем часов на внеаудиторную самостоятельную работу студентов.

В контактной части образовательного курса лекции являются основным форматом представления научно-теоретической информации в обобщенном виде по данной дисциплине. Посещение лекций является важным компонентом знаниево понятийной подготовки студентов в предметной области дисциплины. Преподавание лекций по данной дисциплине организовано на принципах обязательной моментальной обратной связи по коммуникационной линии преподаватель студент. При этом посещение студентом лекций и фиксация им лекционного материала не является достаточным условием для формирования у обучающегося полных теоретических понятийных представлений, практикоприменительных пониманий и компетентностей для самостоятельного использования учебно-научного материала дисциплины.

Для формирования у студентов способностей и навыков практического применения теоретических знаний в программу данного образовательного курса входят учебные лабораторные практикумы, на которых основным дидактическим подходом является общегрупповой разбор и самостоятельное решение студентами определенных учебных задач, выполнение дидактических заданий под консультационным контролем преподавателя, выступающего здесь, главным образом, в роли эксперта-консультанта в предметной области, координирующего и корректирующего самостоятельную

работу студентов. Здесь реализуются принципы коммуникационной интерактивности образовательных процессов как по линии студент – преподаватель, так и по линиям студент – студент. Важность посещения студентом лабораторных практикумов определяется тем, что эти практикумы являются местами и ситуациями собственной учебно-деятельностной практики студента в контексте освоения учебной дисциплины, без чего становится проблемным достижение обучающимися компетентностного уровня в осваиваемой научно-предметной области.

Для продуктивной работы студента на лабораторных практикумах обязательно необходима его самостоятельная внеаудиторная работа с учебной, научной литературой, по меньшей мере той, которая рекомендована для освоения курса. Для более полного и развернутого понимания разных научно-теоретических аспектов дисциплины важно использовать информацию, научные интерпретации, трактовки, пояснения не из одного, а из разных учебных пособий и научных источников, так как в каких-то одних источниках может быть более понятно для конкретного студента и более детально рассмотрены какие-то одни научные вопросы из курса дисциплины, а в других — другие. Для этого современный студент должен пользоваться не только печатными учебными и методическими пособиями, но и должен освоить технологии работы с электронными библиотечными ресурсами, доступ к которым обеспечивается всем студентам вуза.