МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Красноярский государственный педагогический университет им. В.П. Астафьева»

Институт математики, физики и информатики

(наименование института/факультета)

Кафедра-разработчик математики и методики обучения математике (наименование кафедры)

УТВЕРЖДЕНО

ОДОБРЕНО

На заседании кафедры
Протокол № 9 от «08» мая 2024
<u>Шашкина Мария Борисовна</u>
ФИО зав. кафедрой

На заседании научно-методического совета специальности (направления подготовки) Протокол № 7 от 15 мая 2024 Аёшина Екатерина Андреевна

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся

по Дополнительным главам математического анализа

наименование дисциплины /практики/модуля

Для профилей по направлениям подготовки: 44.03.05 Педагогическое образование (с двумя профилями подготовки) Математика и Информатика реализуемых на основе единых подходов к структуре и содержанию «Ядра высшего педагогического образования»

Квалификация: бакалавр

Составители: М.Б. Шашкина, доцент (ФИО, должность)

Н.А. Журавлева, доцент (ФИО, должность)

Фонд оценочных средств по дисциплине «Дополнительные главы математического анализа»

Тест входного контроля

1. Формула
$$f(x) = \begin{cases} \frac{1}{x}, & ecnu \ x < 0, \\ x + 1, & ecnu \ 0 < x \le 2, \end{cases}$$
 задает функцию на: $x^2, & ecnu \ x \ge 2$

- a) $(-\infty; 0];$
- 6) (-∞; 0) \cup (0; 2];
- B) $[2; +\infty);$
- $\Gamma)\left(-\infty;\ 0\right)\cup(0;\ 2)\cup(2;\ +\infty).$
- 2. Число a называется пределом числовой последовательности x_n , если
 - а) для $\varepsilon = \frac{1}{2}$ существует такой номер n_0 , что для всех $n > n_0$ выполняется неравенство $|x_n a| < \varepsilon$
- б) для любого $\varepsilon > 0$ существует такой номер n_0 , что для всех $n > n_0$ выполняется неравенство $|x_n a| < \varepsilon$;
- в) для любого $\varepsilon > 0$ существует такой номер n_0 , что для всех четных $n > n_0$ выполняется неравенство $|x_n a| < \varepsilon$;
- г) для любого $\varepsilon > 0$ существует такой номер n_0 , что для всех $n > n_0$ выполняется неравенство $x_n < a + \varepsilon$.

3.
$$\lim_{x\to 0} \frac{2x \cdot \sin x}{1 - \cos x}$$
 равен: а) 0; б) 2; в) 4; г) 1.

- 4. Функция f, определенная в точке x_0 и некоторой ее окрестности, называется непрерывной в этой точке, если:
- а) существует $\varepsilon > 0$ такое, что для всех x, удовлетворяющих неравенству $|x x_0| < \delta$, выполняется неравенство $|f(x) f(x_0)| < \varepsilon$;
- б) для любого $\varepsilon > 0$ существует такое $\delta > 0$ и такие x, что из неравенства $|x x_0| < \delta$ следует справедливость неравенства $|f(x) f(x_0)| < \varepsilon$;
- в) для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для всех x, удовлетворяющих неравенству $x < x_0 + \delta$, выполняется неравенство $|f(x) f(x_0)| < \varepsilon$;
- г) для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для всех x, удовлетворяющих неравенству $|x x_0| < \delta$, справедливо неравенство $|f(x) f(x_0)| < \varepsilon$.

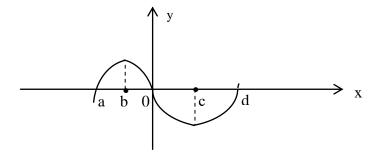
5. Функция
$$f(x) = \begin{cases} -\frac{1}{x}, & ecлu \ x < 0, \\ 2x, & ecлu \ 0 \le x \le 1, \\ 4x - 2, & ecлu \ x > 1 \end{cases}$$

- а) имеет две точки разрыва;
- б) непрерывна в области определения;

- в) имеет точку разрыва второго рода;
- г) имеет точку разрыва первого рода.
- 6. Каким условием является непрерывность функции для ее дифференцируемости?
 - а) необходимым и достаточным;
- в) необходимым;

б) достаточным;

- г) ни необходимым, ни достаточным.
- 7. На рисунке изображен график функции y=f(x). Производная этой функции y'=0 в точках
 - a) *a*, *o*, *d*;
 - б) *b,c;*
 - $\mathbf{B}) b, o, c;$
 - Γ) a,b,c,d.



- 8. Угловой коэффициент касательной, проведенный к кривой $y = \frac{2x+1}{x}$ в точке с абсциссой $x_0 = -1$ равен: a) 0; б) 1; в) -1;
- 9. Дифференциал функции $y = \arcsin 2x$ равен

a)
$$\frac{2}{\sqrt{1-4x^2}}$$
; 6) $\frac{2dx}{\sqrt{1-4x^2}}$; B) $\frac{dx}{2\sqrt{1-4x^2}}$; Γ) $\frac{2dx}{\sqrt{1-x^2}}$.

6)
$$\frac{2dx}{\sqrt{1-4x^2}}$$

$$B) \frac{dx}{2\sqrt{1-4x^2}}$$

$$\Gamma) \frac{2dx}{\sqrt{1-x^2}}$$

10. В какой точке функция $y = x^2 \cdot e^{-x}$ имеет минимум?

$$a)\left(-2;4e^2\right);$$
 $\delta)\left(1;\frac{1}{e}\right);$ $\epsilon)\left(2;\frac{4}{e^2}\right);$ $\epsilon)(0;0).$

$$(\sigma)\left(1;\frac{1}{e}\right);$$

$$e)\left(2;\frac{4}{e^2}\right);$$

$$\mathcal{E}$$
) $(0;0)$

- 11. Первообразной для функции $y = ctg\ x$ в интервале $\left(0; \frac{\pi}{2}\right)$ является функция

a)
$$y = -\ln \cos x$$
; b) $y = \ln \cos x$; c) $y = -\frac{1}{\sin^2 x}$.

12. В семействе интегральных кривых функции $y = \sqrt{x}$ через точку M(9;18) проходит

a)
$$y = \frac{2x\sqrt{x}}{3}$$
;

a)
$$y = \frac{2x\sqrt{x}}{3}$$
; $\delta y = -\frac{2}{\sqrt{x}} + \frac{56}{3}$; $\epsilon y = x\sqrt{x} - 9$; $\epsilon y = \sqrt{x} + 15$.

$$e) y = x\sqrt{x} - 9;$$

$$\varepsilon) y = \sqrt{x} + 15.$$

- 13. Для интегрируемости функции на отрезке условие ее непрерывности на нем является:
 - а) необходимым;
- б) необходимым и достаточным;
- в) достаточным;
- г) ни необходимым, ни достаточным.
- 14. Площадь сегмента, отсекаемого прямой y=x от параболы $y=2x-x^2$ равна

$$a)\frac{2}{3};$$
 $\delta)\frac{1}{6};$ $\epsilon)\frac{5}{6};$ $\epsilon)\frac{9}{2}.$

$$\delta(6)$$
 $\frac{1}{6}$;

$$(6)\frac{5}{6}$$
;

$$\epsilon$$
) $\frac{9}{2}$.

- 15.Ряд $\sum_{n=0}^{\infty} a_n q^n$, где a_0 и q фиксированные действительные числа сходится, если:

- 16. Сумма ряда $\sum_{n=0}^{\infty} \frac{1}{2^n}$ равна:

 - a) $+\infty$; 6) $\frac{1}{2}$; B) 1; Γ 2.
- 17. Радиус сходимости степенного ряда $\sum_{n=1}^{\infty} 3^n x^n$ равен:
 - a) $\frac{1}{3}$; 6) 3; b) $+\infty$; r) 0.

- 18. Если у ряда $\sum_{n=1}^{\infty} a_n \quad \lim_{n \to \infty} a_n \neq 0$, то верно утверждение:
 - а) ряд сходится;
- б) ряд расходится;
- в) ничего определенного о сходимости или расходимости ряда сказать нельзя;
- г) сумма ряда может равняться нулю.

Контрольная работа № 1 по разделу «Дифференциальное исчисление функций нескольких переменных»

- 1. Найти частные производные и дифференциал функции $z = \frac{x^3 + y^2}{x} \cdot arctg \frac{x}{y}$ в точке (1;1).
- 2. $U(x, y) = \ln \cos \frac{xy}{x + y}$, x = t + s. Haŭmu $\frac{\partial u}{\partial t}$, $\frac{\partial u}{\partial s}$.
- 3. Написать уравнения касательной плоскости и нормали К поверхности

$$z = x^3 + y + 2x - 3y$$
 в точке (0;0;0).

- 4. Исследовать на экстремум функцию $z = e^{x+2y}(x^2-y^2)$.
- 5. Найти наибольшее и наименьшее значения функции $z = x^2 y^2 2xy + 2x + 2x$
- в треугольнике, ограниченном осями координат и прямой x + y 3 = 0. 6v
- 6. Найти полное приращение и полный дифференциал функции $f(x,y) = x^2 y^2$ в точке (2,2), если $\Delta x = 0.01$ и $\Delta y = -0.02$, сравнить их.

Контрольная работа № 2 по разделу «Интегральное исчисление функций нескольких переменных»

1. Изменить порядок интегрирования и построить область

a)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x}} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{\sqrt{2-x}} f(x, y) dy;$$
 $\int_{1}^{2} dy \int_{\frac{1}{y}}^{y} f(x, y) dx.$

$$\mathcal{O}(\int_{1}^{2} dy \int_{1}^{y} f(x, y) dx.$$

2. Вычислить интегралы:

a)
$$\iint_{D} \sin(x+y) dx dy$$
, $D: y = 0, y = x, x + y = \frac{\pi}{2}$;

$$\int_{L}^{D} (xy - y^2) dx + x dy$$
, L : дуга параболы $y = 2x^2$ от A(0;0) до B(1;2).

- 3. С помощью формулы Грина преобразовать данный криволинейный интеграл к двойному (не вычислять): $\oint_{L} \frac{\ln x}{x} \cdot y^2 dx + (x^2 \ln y + \ln^2 x) dy.$
- 4. Вычислить с помощью двойного интеграла объем тела, ограниченного поверхностями: x + y = 6, $y = \sqrt{3x}$, z = 4y, z = 0.
- 5. Вычислить с помощью криволинейного интеграла площадь фигуры, лежащей в первой координатной четверти и ограниченной частью эллипса: $x = 3\cos t$, $y = 2\sin t$.

Индивидуальное задание по разделу «Ряды Фурье»

Разложить функцию y = f(x) в ряд Фурье в интервале (- π ; π)

1.
$$f(x) = x + 1$$
.

2.
$$f(x) = 5x + 2$$
.

$$3. f(x) = 7 - \frac{3}{2}x.$$

$$\mathbf{4.}\,f(x) = \frac{\pi - x}{2}.$$

5.
$$f(x) = 9 - 4x$$

6.
$$f(x) = x^2$$
.

7.
$$f(x) = \begin{cases} 0, -\pi < x < 0, \\ x, & 0 \le x < \pi. \end{cases}$$

$$\mathbf{8.}\,f(x)=|x|.$$

9.
$$f(x) = \begin{cases} 2, -\pi < x < 0, \\ -2, 0 \le x < \pi. \end{cases}$$

10.
$$f(x) = \begin{cases} 2, -\pi < x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

11.
$$f(x) = /\sin x/$$
.

12.
$$f(x) = \sin a x$$
.

$$\mathbf{13.}\,f(x)=\cos a\,x.$$

Разложить функцию y = f(x) в ряд Фурье на отрезке $[-\pi; \tau]$

14.
$$f(x) = x^2$$
.

15.
$$f(x) = \begin{cases} 0, & -\pi \le x \le 0, \\ x, & 0 < x \le \pi. \end{cases}$$

$$\mathbf{16.} \ f(x) = |x|.$$

$$\mathbf{17.} \ f(x) = \begin{cases} -\pi - x, & -\pi \le x \le -\frac{\pi}{2}, \\ x, & -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ \pi - x, & \frac{\pi}{2} \le x \le \pi. \end{cases}$$

18.
$$f(x) = \begin{cases} x + 2\pi, & -\pi \le x \le 0, \\ x, & 0 < x \le \pi. \end{cases}$$

- **19.** Функцию f(x) = x разложить в ряды Фурье на отрезке $[0; \pi]$ по синусам и по косинусам.
- **20.** Функцию $f(x) = \frac{\pi x}{2}$ разложить в ряд Фурье на интервале $(0, \pi)$ по синусам.
- **21.** Функцию $f(x) = x^2$ разложить в ряд Фурье в промежутке $[0; \pi)$ по синусам. Функцию y = f(x) разложить в ряд Фурье в указанном промежутке.

22.
$$f(x) = x^2 + 1$$
, (-2; 2).

23.
$$f(x) = |x| + 1$$
, (-1; 1)

24.
$$f(x) = 10 - x$$
, (5; 15).

25.
$$f(x) = /1 - x/$$
, (-2; 2).

26.
$$f(x) = x - 1$$
, (-1; 1).

27.
$$f(x) = x^2$$
, (0; 2π).

28.
$$f(x) = e^x$$
, (-e; e).

29. Разложить в ряд Фурье по синусам и по косинусам функцию

$$f(x) = \begin{cases} x, & 0 < x \le 1, \\ 2 - x, & 1 < x < 2. \end{cases}$$

30. Разложить в ряд Фурье по синусам функцию

$$f(x) = \begin{cases} x, & 0 \le x < \frac{e}{2}, \\ e - x, & \frac{e}{2} \le x \le e. \end{cases}$$
 Написать формулу Парсеваля.

Вопросы к зачету

- 1. Понятие функций нескольких переменных. Предел функций двух переменных.
- 2. Понятие непрерывности функций двух переменных, непрерывность сложной функции. Основные теоремы о непрерывных функциях двух переменных.
- 3. Определение частной производной. Теорема смешанных производных.
- 4. Производные сложных функций нескольких переменных.
- 5. Полное приращение и полный дифференциал функций двух переменных.
- 6. Дифференциалы высших порядков, нарушение инвариантности их формы.
- 7. Задача об объеме цилиндрического тела.

- 8. Понятие о двойном интеграле, его геометрический смысл.
- 9. Условия существования и свойства двойного интеграла.
- 10. Вычисление двойных интегралов (случай прямоугольной и криволинейной области).
- 11. Замена переменных в двойных интегралах.
- 12. Двойной интеграл в полярных координатах.
- 13. Понятие о тройных интегралах и их вычисление.
- 14. Криволинейные интегралы по координатам, свойства криволинейного интеграла.
- 15. Вычисление криволинейных интегралов.
- 16. Приложение криволинейного интеграла к вычислению площади плоской фигуры. Примеры.
- 17. Условия независимости криволинейного интеграла от пути интегрирования.
- 18.Связь двойного и криволинейного интеграла. Формула Грина-Остроградского.
- 19. Восстановление функции по ее полному дифференциалу.
- 20. Задача о разложении функции в ряд по данной ортогональной системе функций. Ряд Фурье.
- 21. Сходимость ряда Фурье. Теорема Дирихле.