МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «красноярский государственный педагогический университет им. В.П. Астафьева»

Институт/факультет/департамент <u>Факультет биологии, географии и химии</u> Кафедра-разработчик <u>Кафедра биологии</u>, химии и экологии

УТВЕРЖДЕНО на заседании кафедры Протокол № 8 от «03» мая 2023 г. Заведующий кафедрой Е.М. Антипова

ОДОБРЕНО
На заседании научно-методического совета специальности (направления подготовки)
Протокол № 4
От «17» мая 2023 г.
Председатель НМСС (Н)
Н.М. Горленко

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Решение химических задач»

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) Направленность (профиль) образовательной программы Биология и химия Квалификация бакалавр

Составитель: Ромашкова Ю.Г.

1. Назначение фонда оценочных средств

- 1.1. **Целью** создания ФОС по дисциплине «<u>Решение химических задач</u>» является установление соответствия учебных достижений запланированным результатам обучения и требованиям рабочей программы дисциплины.
 - 1.2. ФОС разработан на основании нормативных документов:
- федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (уровень бакалавриата), утвержденным приказом Министерством образования и науки Российской федерации от 9 февраля 2016 г. № 91;
- образовательной программы «Биология и химии», очной формы обучения высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки);
- Положения о формировании фонда оценочных средств для текущего контроля успеваемости, промежуточной и итоговой аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры, программам подготовки научно-педагогических кадров в аспирантуре в федеральном государственном бюджетном образовательном учреждении высшего образования «Красноярский государственный педагогический университет им. В.П. Астафьева» утвержденного приказом ректора № 297 (п) от 28.04.2018.
- 2. Перечень компетенций, подлежащих формированию в рамках дисциплины/модуля/практики.
- **2.1. Перечень компетенций**, формируемых в процессе изучения дисциплины «<u>Решение</u> химических задач»:
 - ПК-1: Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач;
 - о ПК-1.1: Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета)
 - о ПК-1.2: Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО
 - о ПК-1.3: Демонстрирует умение разрабатывать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные

3. Фонд оценочных средств для промежуточной аттестации

- 3.1. Фонды оценочных средств включают: зачет.
 - оценочное средство 1 перечень типовых расчетных задач к зачету.
- 3.2. Оценочные средства
- 3.2.1. Оценочное средство: перечень типовых расчетных задач к зачету.

Критерии оценивания по оценочному средству 1

Форми	Продвинутый уровень	Базовый уровень	Пороговый уровень
руемые	сформированности	сформированности	сформированности
компет	компетенций	компетенций	компетенций
енции	(87-100 баллов)	(73-86 баллов)	(60-72 балла)*
	отлично/зачтено	хорошо/зачтено	удовлетворительно/зачте
			НО
ПК-1.1	Обучающийся на	Обучающийся на	Обучающийся на
	продвинутом уровне	базовом уровне знает	пороговом уровне знает
	знает структуру, состав и	структуру, состав и	структуру, состав и
	дидактические единицы	дидактические единицы	дидактические единицы
	предметной области	предметной области	предметной области
	(преподаваемого	(преподаваемого	(преподаваемого
	предмета)	предмета)	предмета)
ПК-1.2	Обучающийся на	Обучающийся на	Обучающийся на
	продвинутом уровне	базовом уровне умеет	пороговом уровне умеет
	умеет осуществлять	осуществлять отбор	осуществлять отбор
	отбор учебного	учебного содержания	учебного содержания
	содержания для его	для его реализации в	для его реализации в
	реализации в различных	различных формах	различных формах
	формах обучения в	обучения в соответствии	обучения в соответствии
	соответствии с	с требованиями ФГОС	с требованиями ФГОС
	требованиями ФГОС ОО	00	00
ПК-1.3	Обучающийся на	Обучающийся на	Обучающийся на
	продвинутом уровне	базовом уровне	пороговом уровне
	демонстрирует умение	демонстрирует умение	демонстрирует умение
	разрабатывать	разрабатывать	разрабатывать
	различные формы	различные формы	различные формы
	учебных занятий,	учебных занятий,	учебных занятий,
	применять методы,	применять методы,	применять методы,
	приемы и технологии	приемы и технологии	приемы и технологии
	обучения, в том числе	обучения, в том числе	обучения, в том числе
	информационные	информационные	информационные

4. Фонд оценочных средств для текущего контроля успеваемости

- 4.1. Фонды оценочных средств включают:
 - оценочное средство 2 входной контроль (проверочная работа),
 - оценочное средство 3 составление конспектов лекций по темам,
 - оценочное средство 4 отчеты по лабораторным работам,
 - оценочное средство 5 решение задач по темам,
 - оценочное средство 6 индивидуальное домашнее задание №1,
 - оценочное средство 7 индивидуальное домашнее задание №2,
 - оценочное средство 8 письменная контрольная работа №1,
 - оценочное средство 9 письменная контрольная работа №2,
 - оценочное средство 10 написание реферата,

4.2. Критерии оценивания

4.2.1. Критерии оценивания см. в технологической карте рейтинга по дисциплины «<u>Решение</u> химических задач».

4.2.2. Критерии оценивания по оценочному средству <u>2 – входной контроль (проверочная работа).</u>

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 4 задания)	4

4.2.3. Критерии оценивания по оценочному средству <u>3 – составление конспектов лекций</u> по темам.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Раскрыты основные понятия по теме	3
Показаны связи между основными понятиями	3
Использование схем и условных обозначений	2
Аккуратность, грамотность, лаконичность	2
Максимальный балл	10

4.2.4. Критерии оценивания по оценочному средству 4 – отчеты по лабораторным работам.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Выполнение работы согласно инструкции	2
Оформление согласно требованиям плана	2
Получение результатов, соответствующих цели работы	2
Самостоятельное формулирование вывода	2
Максимальный балл	8

4.2.5. Критерии оценивания по оценочному средству 5 – решение задач по темам.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждую верно решенную задачу	1
Максимальный балл (за 10 задач)	10

4.2.6. Критерии оценивания по оценочному средству <u>6 – индивидуальное домашнее</u> <u>задание №1.</u>

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 5 заданий)	5

4.2.7. Критерии оценивания по оценочному средству <u>7 – индивидуальное домашнее</u> задание №2.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 5 заданий)	5

4.2.8. Критерии оценивания по оценочному средству <u>8 – письменная контрольная работа</u> №1.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 5 заданий)	5

4.2.9. Критерии оценивания по оценочному средству <u>9 – письменная контрольная работа</u> №2.

Критерии оценивания	Количество баллов (вклад в рейтинг)
За каждое верно выполненное задание	1
Максимальный балл (за 5 заданий)	5

4.2.10. Критерии оценивания по оценочному средству <u>10 – изготовление наглядного</u> пособия.

Критерии оценивания	Количество баллов (вклад в рейтинг)
Соответствие содержания теме	3
Информативность, схематичность, наглядность	3
Аккуратность, грамотность, лаконичность	2
Оригинальность и эстетичность	2
Максимальный балл	10

5. Оценочные средства (контрольно-измерительные материалы)

5.1. Оценочные средства для промежуточной аттестации

5.1.1. Перечень типовых расчетных задач к зачету (оценочное средство №1)

1. Расчеты с участием основных химических понятий: количество вещества, молярная масса, молярный объем, число Авогадро.

$$n = \frac{m}{M}$$
 $n = \frac{V}{V_m}$ $n = \frac{N}{N_A}$ $\rho = \frac{m}{V}$ $V_m = 22,4$ л/моль; $N_A = 6,02 \cdot 10^{23}$ моль $^{-1}$.

2. Расчеты по газовым законам.

$$T_0 = 273 \text{ K (0 °C)}; \ P_0 = 101,3 \text{ кПа (1 атм)};$$
 $T_0 = 273 \text{ K (0 °C)}; \ P_0 = 101,3 \text{ кПа (1 атм)};$ $T_0 = 273 \text{ K (0 °C)}; \ P_0 = 101,3 \text{ кПа (1 атм)};$ $T_0 = 273 \text{ K (0 °C)}; \ P_0 = 101,3 \text{ кПа (1 атм)};$

3. Вычисление массовой доли элемента в соединении. Нахождение простейшей химической формулы вещества по массовым долям элементов. Установление молекулярной формулы вещества по продуктам сгорания.

$$\frac{\omega\%(\Im) = \frac{Ar(\Im) \cdot n}{Mr(e - ea)} \cdot 100\%}{x : y = \frac{\omega\%(A)}{Ar(A)} : \frac{\omega\%(B)}{Ar(B)}} \quad \boxed{D_{\text{эталон}}(X) = \frac{M(X)}{M(\Im Annan)}}$$

4. Вычисление массовой доли компонентов в смеси. Вычисление массовой доли примеси.

$$\omega\%(\textit{чистого } \textit{в} - \textit{вa}) = \frac{m_{\textit{чистого } \textit{в} - \textit{вa}}}{m_{\textit{смеси}}} \cdot 100\%$$

$$\omega\%(\textit{примеси}) = \frac{m_{\textit{примеси}}}{m_{\textit{смесu}}} \cdot 100\%$$

5. Вычисление массовой доли растворенного вещества в растворе.

$$\omega$$
% (растворенного в – ва) = $\frac{m_{pастворенного\ в-ва}}{m_{pacmsopa}} \cdot 100\%$

- 6. Вычисления по уравнениям химических реакций. Задачи на избыток/недостаток.

6

8. Расчеты при смешении растворов. Правило креста.

$$\left\{egin{aligned} \omega_1 & \omega_3 - \omega_2 \ \omega_3 & \omega_1 - \omega_3 \ \end{array}
ight\}$$
 — число частей раствора с $\left. \omega_1 \right.$

9. Вычисление молярной концентрации растворенного вещества в растворе.

$$\boxed{C = \frac{n_{e-ea}}{V_{p-pa}}} \boxed{C = \frac{m_{e-ea}}{M_{e-ea} \cdot V_{p-pa}}} \boxed{C = \frac{10 \cdot \rho \cdot \omega(\%)}{M_{e-ea}}}$$

10. Вычисление моляльной концентрации растворенного вещества в растворе.

$$\boxed{C_{m} = \frac{n_{e-ea}}{m_{p-n}} \quad \boxed{C_{m} = \frac{m_{e-ea}}{M_{e-ea} \cdot m_{p-n}}} \quad \boxed{C_{m} = \frac{\omega(\%) \cdot 1000}{M_{e-ea} \cdot (100\% - \omega\%)}}$$

11. Вычисление мольной доли растворенного вещества в растворе. $\chi_A = \frac{n_A}{n_A + n_B}$

12. Коллигативные свойства растворов: закон Вант-Гоффа $\boxed{\pi = C \cdot R \cdot T}$; законы Рауля: $\boxed{\Delta t_{\kappa un} = K_{\circ \delta} \cdot C_m}$, $\boxed{\Delta t_{\circ am} = K_{\kappa p} \cdot C_m}$, $\boxed{\Delta p = p_0 - p_1 = p_0 \cdot \chi_A}$

13. Расчеты по термохимическим уравнениям. $\Delta G_{298}^0 = \Delta H_{298}^0 - T \cdot \Delta S_{298}^0$

14. Расчеты по электрохимическим уравнениям. $m = \frac{M \cdot I \cdot \tau}{z \cdot F}$ $V = \frac{V_m \cdot I \cdot \tau}{z \cdot F}$

15. Расчет рН в растворах сильных и слабых электролитов.

$$\boxed{pH = -\lg[H^+]} \boxed{K = \frac{\alpha^2 \cdot C}{1 - \alpha}} \boxed{[H^+] = \sqrt{K_a \cdot C_{HAn}}} \boxed{[H^+] = \frac{K_w}{\sqrt{K_a \cdot C_{HAn}}}}$$

16. Расчет рН с учетом ионной силы раствора и активных концентраций.

$$\boxed{pH = -\lg a_{H^+}} \quad \boxed{a = f_a \cdot C} \quad \boxed{I_c = \frac{1}{2} \sum C_i z_i^2} \quad \boxed{\lg f_i = -\frac{0.512 \cdot z_i^2 \sqrt{I_c}}{1 + \sqrt{I_c}}}$$

17. Расчет рН в растворах гидролизующихся солей.

$$\boxed{ \begin{bmatrix} H^+ \end{bmatrix} = \sqrt{\frac{K_w \cdot K_a}{C_{conu}}} } \boxed{ \begin{bmatrix} H^+ \end{bmatrix} = \sqrt{\frac{K_w \cdot C_{conu}}{K_b}} } \boxed{ \begin{bmatrix} H^+ \end{bmatrix} = \sqrt{\frac{K_w \cdot K_a}{K_b}} }$$

18. Расчет рН в буферных системах. $[H^+] = K_a \cdot \frac{C_{HAn}}{C_{conu}}$ $[H^+] = \frac{K_w}{K_b} \cdot \frac{C_{conu}}{C_{KtOH}}$

19. Расчеты по уравнениям окислительно-восстановительных реакций.

$$E_{Ox/Red} = E_{Ox/Red}^{0} + \frac{0,059}{z} \lg \frac{[Ox]}{[Red]}$$

$$\boxed{9 / C = E_{Ox} - E_{Red}}$$

5.2. Оценочные средства для текущего контроля успеваемости

5.2.1. Входной контроль (проверочная работа) (оценочное средство №2)

Вариант 1

- 1. Определите, в какой порции вещества содержится больше атомов:
 - А) в 5 моль свинца или в 5 моль цинка;
 - Б) в 119 г олова или в 56 г железа.
- 2. Вещество содержит 27,3% С и 72,7% О. Определите молекулярную формулу вещества, если известно, что 1 л (н.у.) его имеет массу 1,97 г.
- 3. Вычислите массовую долю поваренной соли в растворе, полученном при смешивании 200 г 5%-ного раствора и 300 г 8%-ного раствора поваренной соли.
- 4. Смешали растворы, содержащие 13,4 г хлорида меди (II) и 8,4 г гидроксида калия. Найдите массу образовавшегося осадка.

- 1. Определите, в какой порции вещества содержится больше атомов:
 - А) в 1 г серебра или в 1 г золота;
 - Б) в 48 г магния или в 69 г натрия.
- 2. Вещество содержит 85,7% С и 14,3% Н. Определите молекулярную формулу вещества, если известно, что 1 л (н.у.) его имеет массу 1,875 г.
- 3. Вычислите массовую долю серной кислоты в растворе, полученном при сливании 500 г 10%-ного раствора и 250 г 20%-ного раствора серной кислоты.
- 4. К раствору, содержащему 3,22 г хлорида железа (III), добавили 3,6 г гидроксида натрия. Найдите массу выпавшего осадка.

5.2.2. Составление конспектов лекций по темам (оценочное средство №3)

- Тема 1. Классификация химических задач.
- *Тема* 2. Расчеты в равновесных системах. Задачи на материальный баланс.
- *Тема 3*. Способы выражения состава растворов.
- *Тема 4*. Расчет рН в растворах сильных и слабых электролитов.

5.2.3. Отчеты по лабораторным работам (оценочное средство №4)

План отчета по лабораторной работе

Тема лабораторной работы	
Цель лабораторной работы	
Задачи лабораторной работы	
Материалы и оборудование	
Реактивы	
Ход работы	 Уравнения реакций и расчет количеств исходных веществ. Рисунки химических установок для синтеза. Описание хода работы. Наблюдения и результаты. Расчет количеств продуктов реакции и
	определение выхода продуктов реакции.
Вывод по лабораторной работе	

Перечень лабораторных работ:

Лабораторная работа № 1 «Приготовление растворов».

Лабораторная работа № 2 «Окислительно-восстановительные реакции».

Лабораторная работа № 3 «Приготовление и расчет рН в растворах сильных и слабых электролитов».

Лабораторная работа № 4 «Экспериментальные задачи на качественные реакции».

5.2.4. Решение задач по темам (оценочное средство №5)

- *Тема 1.* Задачи на установление молекулярной формулы вещества.
- *Тема 3*. Задачи на лимитирующий компонент (избыток-недостаток).
- *Тема 3*. Расчеты по параллельным и последовательным реакциям.
- *Тема 4*. Вычисления по термохимическим уравнениям реакций.
- *Тема 5*. Расчеты по уравнениям OBP и электрохимическим уравнениям реакций.
- *Тема 6*. Расчеты при приготовлении и смешивании растворов.

- *Тема 7.* Расчет рН в растворах гидролизующихся солей и буферных системах.
- Тема 8. Расчеты в гетерогенных системах.
- Тема 9. Экспериментальные задачи в качественном анализе.
- Тема 10. Комбинированные задания.

5.2.5. Индивидуальное домашнее задание №1 (оценочное средство №6)

Вариант 1

- 1. Какова температура кипения раствора, содержащего 100 г воды и 9 г глюкозы $C_6H_{12}O_6$? K_{96} (H_2O) = 0,516 (кг·°C)/моль.
- 2. Найдите массу гидроксида меди (II), образующегося при сливании 400 г 13,5%-ного раствора хлорида меди (II) и 400 г 20%-ного раствора гидроксида натрия.
- 3. Определить стандартное изменение энтальпии ΔH°_{298} реакции горения метана $CH_{4(\Gamma.)}+O_{2(\Gamma.)}=CO_{2(\Gamma.)}+H_2O_{(\Gamma.)}$, зная, что энтальпии образования веществ $CO_{2(\Gamma.)}$, $H_2O_{(\Gamma.)}$ и $CH_{4(\Gamma.)}$ равны -393,5 кДж/моль, -241,8 кДж/моль и -74,9 кДж/моль, соответственно.
- 4. При 150 °C некоторая реакция заканчивается за 16 мин. За какое время закончится эта реакция при 200 °C, если температурный коэффициент реакции равен 2,5?
- 5. Какие вещества и в каком количестве выделятся на электродах при прохождении через раствор хлорида магния тока силой 3,6 А в течение 10 мин.?

- 1. При какой температуре замерзнет раствор 5 г глицерина $C_3H_5(OH)_3$ в 250 г воды? $K_{\kappa p}$ $(H_2O)=1,86$ ($\kappa r \cdot {}^{\circ}C)$ /моль.
- 2. Какая масса осадка образуется при сливании 200 г 5,85%-ного раствора хлорида натрия и 100 г 1,7%-ного раствора нитрата серебра?
- 3. Определить стандартное изменение энтальпии ΔH°_{298} реакции $2Mg_{(\kappa.)}+CO_{2(\Gamma.)}=2MgO_{(\kappa.)}+C_{(\Gamma paфит)}$, зная, что стандартные энтальпии образования CO_2 и MgO равны 393,5 кДж/моль и -601,8 кДж/моль, соответственно.
- 4. При 150 °C некоторая реакция заканчивается за 16 мин. За какое время закончится эта реакция при 80 °C, если температурный коэффициент реакции равен 2,5?
- 5. Какие вещества и в каком количестве выделятся на электродах при прохождении через раствор нитрата серебра тока силой 4 А в течение 15 мин.?

5.2.6. Индивидуальное домашнее задание №2 (оценочное средство №7)

Вариант 1

- 1. При давлении $2 \cdot 10^5$ Па объем газа равен 2 дм³. Определить, при каком давлении объем газа будет равен 1 дм³, если температура остается постоянной.
- 2. В стальном баллоне объемом 12 л находится кислород под давлением 1 10^8 Па при температуре 0° С. Какой объем займет этот газ при н.у.?
- 3. Сколько граммов свободного йода выделится при пропускании 3,36 л хлора (н.у.) через раствор, содержащий 15 г иодида калия, если выход реакции составляет 90%?
- 4. Вычислите, какой объем 96%-го раствора серной кислоты (плотность раствора 1,836 г/мл) нужно взять для того, чтобы .приготовить 0,5 л раствора, молярная концентрация кислоты в котором 0,2 моль/л.
- 5. Рассчитайте рН раствора, полученного при растворении 16,8 л аммиака (н. у.) в воде, если объем полученного раствора составил 3 литра.

Вариант 2

- 1. При 17°C некоторое количество газа занимает объем 580 мл. Какой объем займет это же количество газа при 100°C, если давление остается неизменным?
- 2. Вычислите массу хлора объемом 10 мл при температуре 27° С и давлении 1,51 10^{5} Па.
- 3. Из 1 кг глинозема, содержащего 95 % оксида алюминия, получили 0,426 кг алюминия. Каков процент выхода?
- 4. Вычислите молярную концентрацию раствора, который получили после разбавления водой 24,8 мл раствора с массовой долей хлораводорода 37 % (плотность раствора 1,19 г/мл) до объема 1,5 л.
- 5. Считая, что кислотность желудочного сока (pH = 1,55) практически полностью обеспечивается хлороводородной кислотой, рассчитайте концентрацию HCl в желудочном соке.

5.2.7. Письменная контрольная работа №1 (оценочное средство №8)

- 1. Смесь кальция и оксида кальция массой 4,8 г обработали водой. Объем выделившегося газа составил 1,12 л. Рассчитайте массовые доли компонентов смеси.
- 2. Колонна синтеза аммиака дает 1500 т продукта в сутки. Рассчитайте массу раствора 63%-й азотной кислоты, которую получают из этого количества аммиака.
- 3. Составить уравнение реакции взаимодействия раствора сульфита натрия Na_2SO_3 (восстановитель) с раствором перманганата калия $KMnO_4$ (окислитель) в кислой среде.
- 4. Массовая доля углерода в веществе составляет 51,89%, хлора 38,38 %, остальное водород. Относительная плотность паров этого вещества по воздуху равна 3,19. Определите истинную формулу вещества.
- 5. Медную пластинку массой 15 г погрузили в раствор нитрата серебра. На растворение осажденного серебра потребовалось 25 мл 15%-ной азотной кислоты ($\rho = 1,085$ г/мл). Какова масса медной пластинки после выдерживания в растворе нитрата серебра?

Вариант 2

- 1. После нагревания смеси нитратов цинка и натрия массой 20,5 г образовавшиеся газы были пропущены через воду, причем 1,12 л газа (н. у.) не поглотилось. Определите состав смеси нитратов.
- 2. Вычислите массу бертолетовой соли, которую нужно разложить для выделения кислорода, необходимого для получения 10,8 г оксида алюминия из чистого металла.
- 3. Составить уравнение реакции взаимодействия раствора сульфита натрия Na_2SO_3 (восстановитель) с раствором перманганата калия $KMnO_4$ (окислитель) в нейтральной среде.
- 4. При полном сгорании 3,8 г вещества, в состав которого входят углерод и сера, образовались 2,2 г диоксида углерода и диоксид серы. Относительная плотность вещества по водороду равна 38, определите его формулу.
- 5. Цинковую пластинку погрузили в 500 г раствора сульфата железа (II) с массовой долей 20%. После выдерживания пластинки в растворе ее масса уменьшилась на 5 г. Какова массовая доля сульфата железа (II) в растворе после реакции?

5.2.8. Письменная контрольная работа №2 (оценочное средство №9)

Вариант 1

- 1. Определить рН 0,2 М раствора серной кислоты.
- 2. Вычислить активность анионов $a[OH^-]$ в 0,01 М растворе гидроксида калия КОН, учитывая ионную силу раствора.
- 3. В 0,5 л раствора содержится 4,8 г ацетата аммония. Определить степень гидролиза этой соли и рН ее раствора.
- 4. Сколько граммов хлорида аммония следует растворить в 200 мл 0,52 н. раствора гидроксида аммония, чтобы получить концентрацию гидроксид ионов $[OH^-]$, равную $5\cdot 10^{-4}$ моль/л?
- 5. Во сколько раз растворимость CaC_2O_4 в 0,01 M растворе $(NH_4)_2C_2O_4$ меньше растворимости его в чистой воде с учетом и без учета коэффициента активности?

- 1. Определить рН 0,05 М раствора муравьиной кислоты.
- 2. Чему равны коэффициент активности и активность иона хлора в $0.015~\mathrm{M}$ растворе $\mathrm{ZnCl_2}$?
- 3. Вычислить константу и степень гидролиза соли ацетата калия, если в 1л раствора содержится 11,76 г этой соли.
- 4. Сколько молей кристаллического ацетата калия необходимо растворить в 100 мл 0,0375 М раствора уксусной кислоты, чтобы получить рН раствора, равный 5,43?.
- 5. Вычислить молярную растворимость BaSO₄ в 0,01 М растворе Na₂SO₄ с учетом коэффициента активности.

5.2.9. Изготовление наглядного пособия (оценочное средство №10)

Список тем для изготовления наглядного пособия:

- Тема 1. Основные понятия и законы химии. Газовые законы
- Тема 2. Расчеты по установлению молекулярной формулы вещества
- Тема 3. Решение задач на лимитирующий компонент (избыток-недостаток)
- Тема 4. Решение задач на примеси и выход продуктов реакции
- Тема 5. Расчеты по параллельным реакциям
- Тема 6. Расчеты по последовательным реакциям
- Тема 7. Задачи на материальный баланс
- Тема 8. Расчеты в равновесных системах. Вычисления по термохимическим уравнениям реакций.
- Тема 9. Расчеты по уравнениям окислительно-восстановительных реакций
- Тема 10. Расчеты по электрохимическим уравнениям реакций
- Тема 11. Расчеты при приготовлении и смешивании растворов
- Тема 12. Способы выражения состава растворов
- Тема 13. Расчет рН в растворах сильных и слабых электролитов
- Тема 14. Расчет рН в растворах гидролизующихся солей и буферных системах
- Тема 15. Расчеты в гетерогенных системах
- Тема 16. Экспериментальные задачи на качественные реакции
- Тема 17. Комбинированные задания