## МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Красноярский государственный педагогический университет им.В.П.Астафьева (КГПУ им.В.П.Астафьева)

| и информа            | ТИКИ                                                         |                    |  |
|----------------------|--------------------------------------------------------------|--------------------|--|
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
| ДОПУС                | СКАЮ К ЗАЩИ                                                  | TE                 |  |
| Зав. кафедрой физики |                                                              |                    |  |
|                      | д.фм.н., про                                                 | фессор А.М.Баранов |  |
| <b>«</b>             | »                                                            | 2015 г             |  |
| я квалифик           | ационная работа                                              | ι                  |  |
|                      |                                                              |                    |  |
| ІО ГЕОМЕ             | ТРИЧЕСКОЙ                                                    | ОПТИКЕ С           |  |
| СПЕРИМІ              | ЕНТАЛЬНОЙ І                                                  | ПРОВЕРКОЙ          |  |
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
| № 57                 |                                                              |                    |  |
| ІН                   |                                                              |                    |  |
| очная                |                                                              |                    |  |
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
| й                    |                                                              |                    |  |
|                      |                                                              |                    |  |
|                      |                                                              |                    |  |
| _                    | рск                                                          |                    |  |
|                      | ДОПУС Зав. кас « я квалифика ПО ГЕОМЕ СПЕРИМІ  № 57  н очная |                    |  |

# Содержание

| Введе | ение                                 | 3  |
|-------|--------------------------------------|----|
| Глава | а 1. Комплекс задач                  | 6  |
| 1.1.  | Описание используемого оборудования. |    |
| 1.2.  | Комплекс задач                       | 10 |
| Заклю | очение                               | 40 |
| Библи | иографический список                 | 41 |

#### Введение

#### <u> Актуальность работы.</u>

В настоящее время учебный процесс по физике делится на три сравнительно независимые части: теоретический материал, решение задач, демонстрационный и лабораторный практикум. Физическое образование в школе остается консервативным, никак не связанным с современным научным процессом.

Современный научный процесс состоит из двух частей: математическая «проработка» физической проблемы — теоретическое исследование физики задачи на основе математических методов и компьютерных технологий; экспериментальное исследование физической проблемы.

Актуальность темы дипломной работы состоит в показе и применении современной технологии изучения физической задачи в школьном учебном процессе.

#### Анализ литературы по данной тематике.

Нами были проанализированы методические работы Усовой А.В.[2,3], а также учебные пособия по физике Перышкина А.В.[4,5], Пинского А.А.[6], Сивухина Д.В.[9], Савельева И.В.[8] и других. В ходе анализа мы обнаружили, что предлагаемую нами методику решения задач до нас ещё никто не предлагал, хотя она полностью соответствует требованиям государственного стандарта и призвана помочь преподавателям, а главное, учащимся в понимании связи теории и практики в школьной физике.

#### Цель работы.

Целью данной дипломной работы является поиск физических задач школьного уровня, раскрывающих технологию работы современной физики.

Для достижения данной цели были поставлены следующие задачи:

- 1. Разработать комплекс задач, сочетающих их теоретическое решение с последующей экспериментальной проверкой.
- 2. Дать методические указания для успешного проведения таких занятий на уроках физики в школе.

#### Научная новизна работы.

Научная новизна работы состоит в предложении методики соединяющей процесс решения физических задач с экспериментальной проверкой этого решения. Экспериментальная проверка решения задачи дает школьнику понимание того, что теория необходима для объяснения реальной физической ситуации.

## Практическая ценность работы.

Предложен набор разобранных задач, проверка решения которых проводится посредством эксперимента.

## Основные результаты, выносимые на защиту работы.

Имеется комплекс решенных задач, который был проверен экспериментально и есть некоторые результаты с применением данной методики в школе.

## Апробация работы.

Апробация работы была проведена в школе №145, во время педагогической практики.

# Структура работы.

Работа состоит из введения, одной главы, заключения и библиографического списка.

# 1.1. Описание оборудования:

1. Набор линз с разным фокусным расстоянием на подставках (рис. 1). Так же пригодятся линзы с одинаковым фокусным расстоянием. В школе такие линзы имеются.



*Puc. 1* 



Puc. 2

2. Экран на подставке (рис. 2).

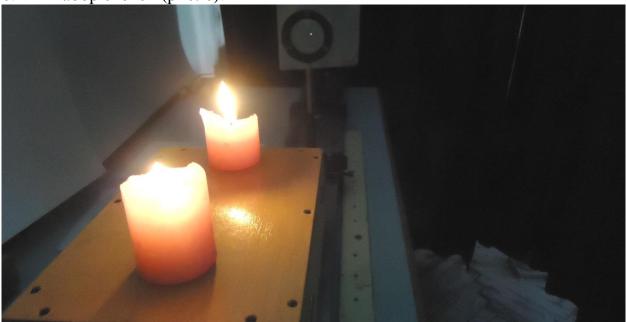
3. Призма, которая позволяет получить из одного луча, два (рис. 3). В школе имеется.



Рис. 3

# 4. Линейка (рис. 4).




Puc. 4

# 5. Лазер(лазерная указка). В школе имеется (рис. 5).



Puc. 5

6. Набор свечей (рис. 6).



*Puc.* 6

7. Скамья демонстрационная (рис. 7).



*Puc.* 7

### 1.2. Комплекс задач

1. Фокусное расстояние двух тонких линз равно f1 и f2. Чему равно фокусное расстояние системы из этих двух линз, собранных вместе? Чему равна оптическая сила этой системы (из задачника О. Я. Савченко [1], №13.3.19)?

#### Рисунок:



Рис. 8. 1-первая линза, 2-вторая линза, S — точечный источник света, S-изображение,  $F_{1}$ ,  $F_{2}$  - фокусные расстояния линз, a — расстояние от источника света, до первой линзы, b — расстояние от второй линзы, до изображения.

#### Решение:

Поместим точечный источник света(лампочку) S на фокусное расстояние  $F_1$ . Рисунок «говорит» о том, что изображение S' будет находиться на расстоянии  $F_2$  от второй линзы. Если расстояние между линзами  $\Delta << F_1$  и  $F_2$ , то используем формулу линзы (систему линз заменяем «одной» линзой).

10

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$
, где  $a = F_1$ ,  $b = F_2$ ,  $F_0$  - фокусное расстояние системы линз;

$$\frac{1}{F_1} + \frac{1}{F_2} = \frac{F_1 + F_2}{F_1 * F_2} = \frac{1}{F_0}$$

$$F_0 = \frac{F_1 * F_2}{F_1 + F_2}$$

Проверяем на опыте, при конкретных значениях  $F_1$  и  $F_2$ .

Оптическая сила системы линз(1-2)

$$\phi = \frac{1}{F_0} = \frac{F_1 + F_2}{F_1 * F_2} = \frac{1}{F_2} + \frac{1}{F_1} = \phi_1 + \phi_2$$

# Экспериментальная часть:

1. С помощью специальной призмы мы получаем два параллельных луча, которые помогут нам найти фокусные расстояния линз.



Рис. 9. Один луч лазера.

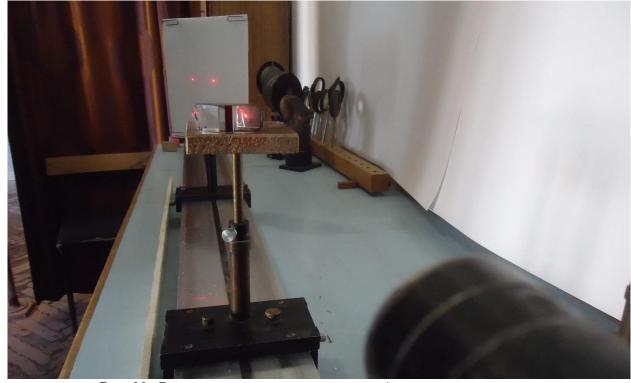



Рис. 10. С помощью призмы мы получили два параллельных луча.

2. Находим фокусное расстояние первой линзы(красная) с помощью её перемещения вдоль хода лучей и нахождения такого состояния, при котором лучи сойдутся в одну точку(пересекутся).

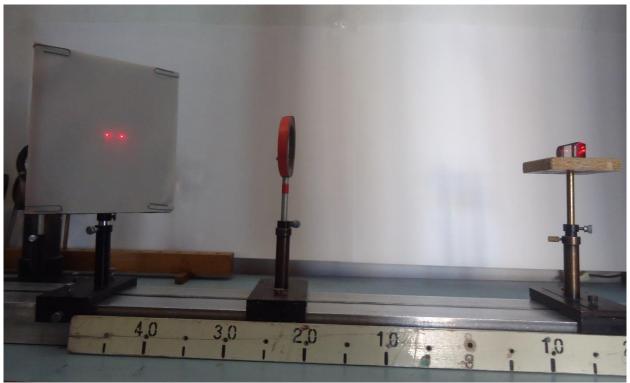



Рис. 11. Перемещаем линзу, ищем фокусное расстояние.

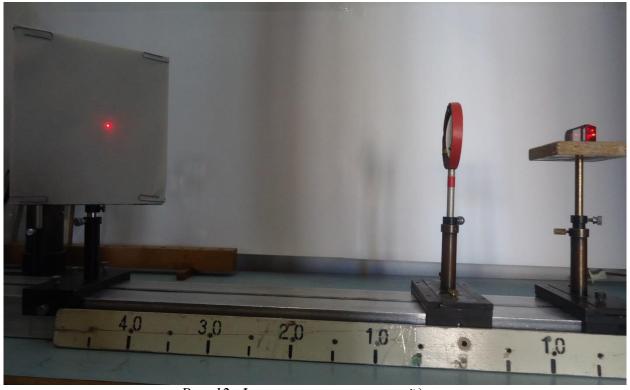



Рис. 12. Фокусное расстояние найдено.

Значение найдено:  $F_1 = 50 cm$ .

# 3. Находим фокусное расстояние второй линзы(желтая) аналогичным способом.

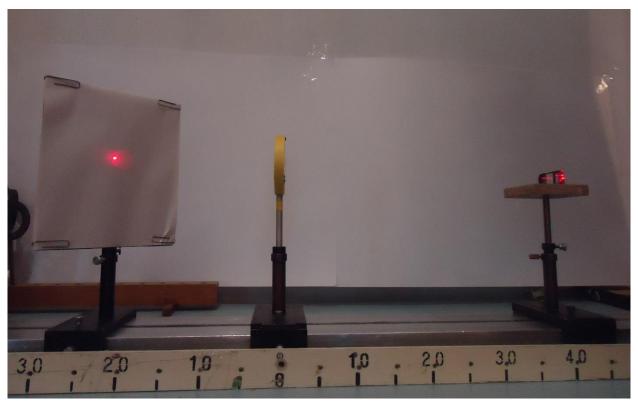



Рис. 13. Перемещаем линзу, ищем фокусное расстояние.

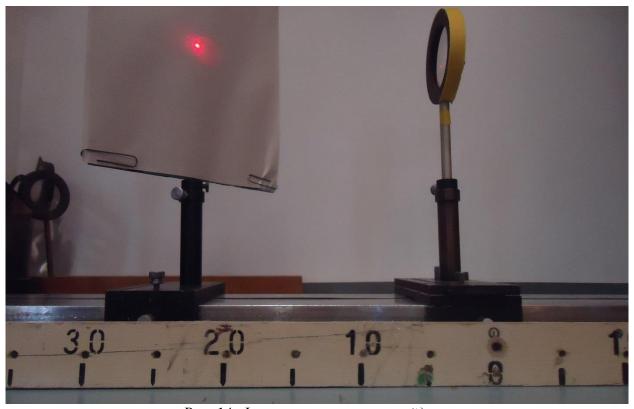



Рис. 14. Фокусное расстояние найдено.

Значение найдено:  $F_2 = 27 c M$ .

# 4. Теперь сделаем систему из двух линз и узнаем фокусное расстояние этой системы.

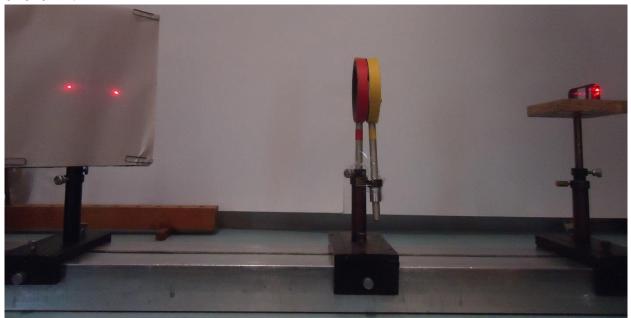



Рис. 15. Перемещаем систему из двух линз, ищем фокусное расстояние.

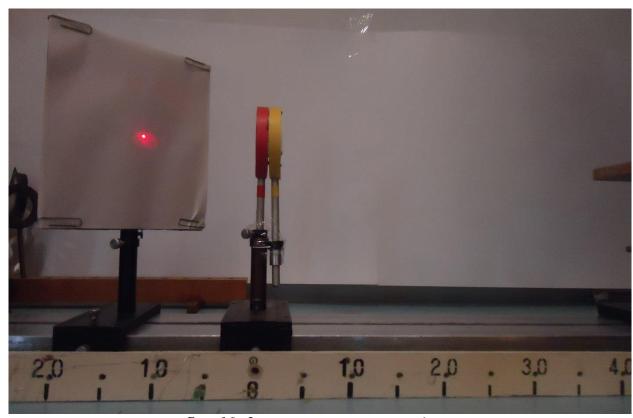



Рис. 16. Фокусное расстояние найдено.

Значение найдено:  $F_0 = 17 c M$ .

Сравним результат эксперимента с теорией:

 $F_1 = 50cm$   $F_2 = 27cm$ 

$$F_0 = \frac{F_1 * F_2}{F_1 + F_2} = \frac{50 * 27}{50 + 27} = 17,53$$
см Ответ верный.

## Методические указания:

Для нахождения фокусного расстояния линзы можно использовать два лазера, при наличии их в школе. На линзах лучше всего сделать отличительные пометки(цвет). В целом, проверка задачи не вызывает у школьников трудностей и занимает немного времени, при подготовленном оборудовании.

2. На каком расстоянии от линзы расположен предмет, если расстояние между предметом и его действительным изображением минимально? Фокусное расстояние линзы f (из задачника О. Я. Савченко [1], №13.3.4).

### Рисунок:

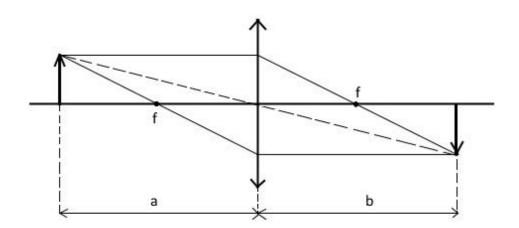



Рис. 17. f- фокусное расстояние линзы, a — расстояние от предмета(свечи), до линзы, b — расстояние от линзы, до изображения.

#### Решение:

a+b=z - расстояние между предметом и изображением.

$$b = z - a$$

формула линзы:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f} \Longrightarrow \frac{1}{a} + \frac{1}{z - a} = \frac{1}{f}$$

$$\frac{1}{z-a} = \frac{1}{f} - \frac{1}{a} = \frac{a-f}{f*a},$$
 переворачиваем;

$$z - a = \frac{f * a}{a - f}$$

$$z = a + \frac{f * a}{a - f}$$
, условие min z;

$$\frac{dz}{da} = 1 + \frac{f(a-f) - f * a}{(a-f)^2} = 1 - \frac{f^2}{(a-f)^2} = 0$$

очевидно, что a=2f.

# Неочевидное решение:

$$\frac{d}{dx} \left( \frac{U}{V} \right) = \frac{U'V - V'U}{U^2}$$

$$(a-f)^2-f^2=0$$

$$a - f = \sqrt{f}$$

$$a = 2f$$

# Экспериментальная часть:

1. С помощью специальной призмы мы получаем два параллельных луча, которые помогут нам найти фокусное расстояние линз.



Рис. 18. Один луч лазера.

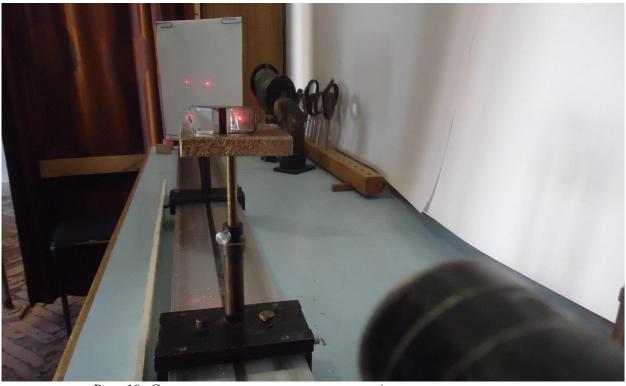



Рис. 19. С помощью призмы мы получили два параллельных луча.

2. Находим фокусное расстояние линзы с помощью её перемещения вдоль хода лучей и нахождения такого состояния, при котором лучи сойдутся в одну точку(пересекутся).

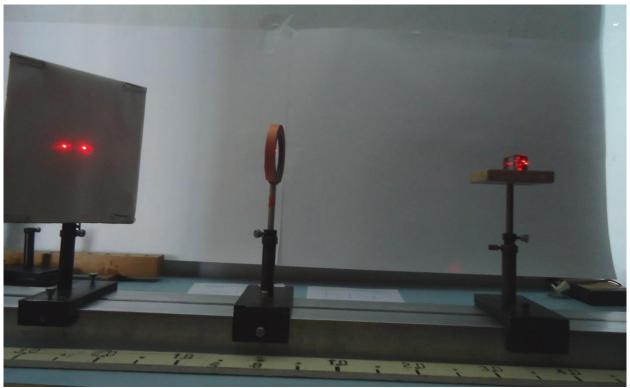



Рис. 20. Перемещаем линзу, ищем фокусное расстояние.

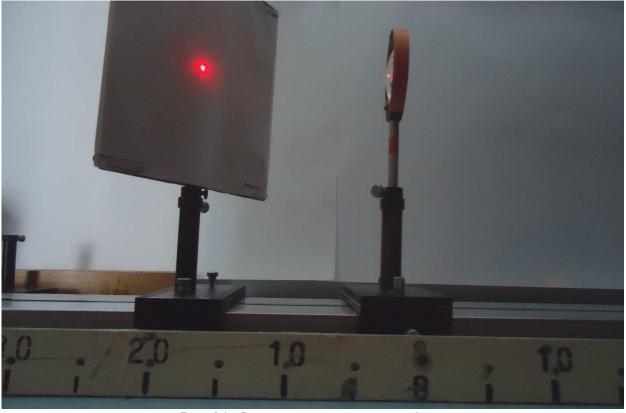



Рис. 21. Фокусное расстояние найдено.

Значение найдено: F = 20 c M.

3. Закрепим на рабочем столе подставку с горящей свечой и найдём расстояние от изображения свечи, до линзы.

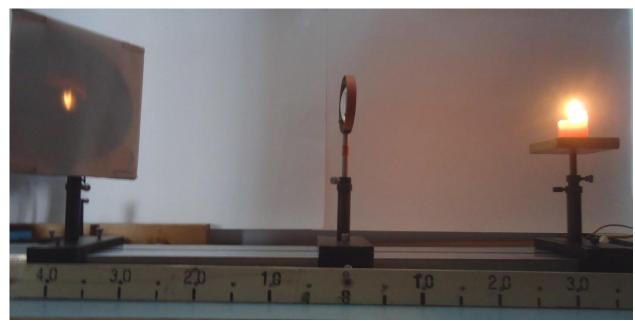



Рис. 22. Ищем расстояние от изображения свечи, до линзы.



Рис. 23. Значение найдено.

Расстояние a=40см.

Сравним с теорией: a = 2f = 2 \* 20 = 40см

Ответ верный.

Методические указания:

Вместо свечки можно использовать лампочку.

3. Предмет в виде отрезка длины 1 расположен вдоль оптической оси собирающей линзы с фокусным расстоянием f, дающей действительное изображение всех его точек. Середина отрезка расположена на расстоянии а от линзы. Определите продольное увеличение предмета (из задачника О. Я. Савченко [1], №13.3.6).

## Рисунок:

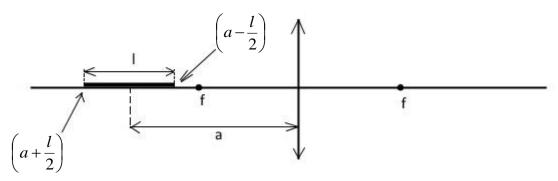



Рис. 24. f- фокусное расстояние линзы, a – расстояние от центра предмета, до линзы, l – длина предмета.

#### Решение:

формула линзы для точки 1:

$$\frac{1}{a+\frac{l}{2}} + \frac{1}{b_1} = \frac{1}{f} \Rightarrow \frac{1}{b_1} = \left(\frac{1}{f} - \frac{1}{a+\frac{l}{2}}\right)$$

$$b_1 = \frac{f}{1 - \left(\frac{f}{a + \frac{l}{2}}\right)} \text{ T.K. } b_1 = \frac{f\left(a + \frac{l}{2}\right)}{\left(a + \frac{l}{2} - f\right)}$$

$$b_2 = \frac{f}{1 - \left(\frac{f}{a - \frac{l}{2}}\right)}$$
 увеличение  $k = \frac{b_2 - b_1}{l}$ 

$$k = \frac{f}{l} \left[ \frac{1}{1 - \frac{f}{a - \frac{l}{2}}} - \frac{1}{1 - \frac{f}{a + \frac{l}{2}}} \right] = \left( \frac{f}{l} \right) * \frac{1 - \frac{f}{a + \frac{l}{2}} - 1 + \frac{f}{a - \frac{l}{2}}}{\left( 1 - \frac{f}{a - \frac{l}{2}} \right) * \left( 1 - \frac{f}{a + \frac{l}{2}} \right)}$$

$$k = \left( \frac{f^2}{l} \right) * \frac{\frac{1}{a - \frac{l}{2}} - \frac{1}{a + \frac{l}{2}}}{\left( 1 - \frac{f}{a - \frac{l}{2}} \right) * \left( 1 - \frac{f}{a + \frac{l}{2}} \right)} = \left( \frac{f^2}{l} \right) * \frac{a + \frac{l}{2} - a + \frac{l}{2}}{\left( 1 - \frac{f}{a - \frac{l}{2}} \right) * \left( 1 - \frac{f}{a + \frac{l}{2}} \right)}$$

$$\left( a - \frac{l}{2} \right) * \left( a + \frac{l}{2} \right) * \left( 1 - \frac{f}{a - \frac{l}{2}} \right) * \left( 1 - \frac{f}{a + \frac{l}{2}} \right)$$

$$k = f^{2} \frac{1}{\left(a - \frac{l}{2} - f\right) * \left(a + \frac{l}{2} - f\right)} = \frac{f^{2}}{\left(a - f - \frac{l}{2}\right) * \left(a - f + \frac{l}{2}\right)} = \frac{f^{2}}{\left(a - f\right)^{2} - \frac{l^{2}}{4}}$$

Ответ:

$$k = \frac{f^2}{(a-f)^2 - \frac{l^2}{4}}$$

$$\frac{l}{2}\langle\langle a-f$$

$$k_{l\to 0} = \frac{f^2}{\left(a - f\right)^2}$$

Это значит, что увеличение слабо зависит от 1.

# Экспериментальная часть:

1. Для начала определим фокусное расстояние линзы, уже знакомым нам способом, с помощью двух лучей.

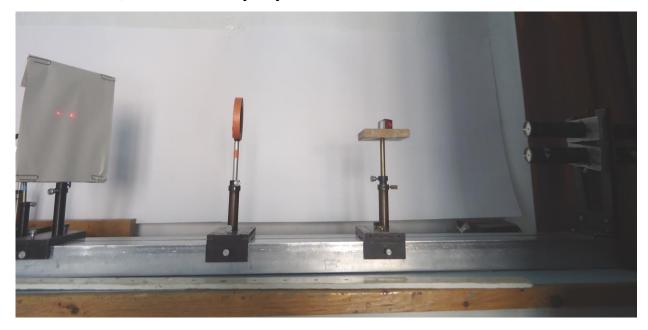



Рис. 25. Перемещаем линзу, ищем фокусное расстояние.

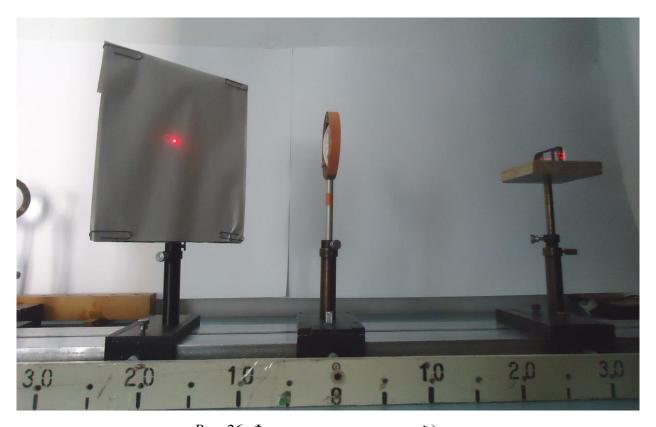
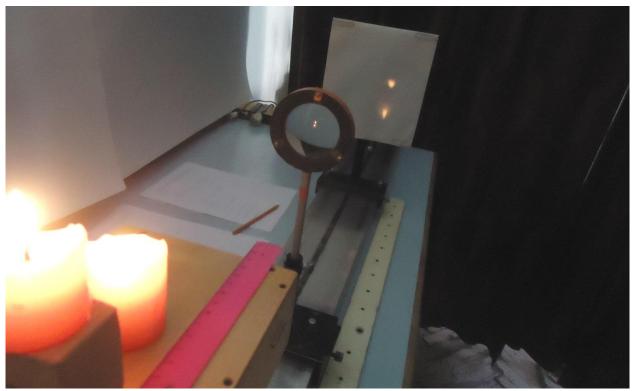
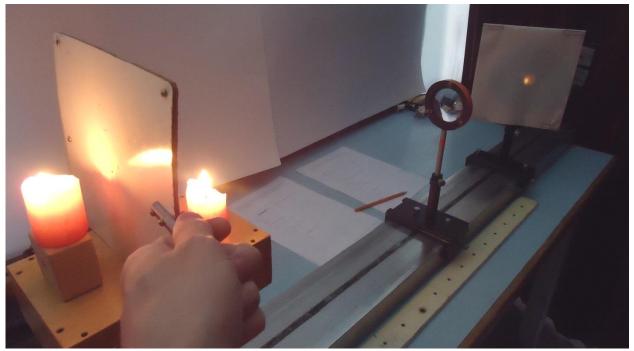



Рис. 26. Фокусное расстояние найдено.


*F*=20*см*.

2. Вместо предмета мы будем использовать две свечи (рис. 27), которые расположим в двух крайних точках на расстоянии l.




Puc. 27

3. Для удобства мы поместим свечи на разной высоте (рис. 28).



*Puc.* 28

4. Получать изображения от свечей мы будем поочередно, закрывая одну, потом другую (рис. 29).



Puc. 29

5. Расстояние между свечками  $l=10c_M$ 



Рис. 30. Расстояние между свечами

6. Получаем четкое изображение от первой свечи. Расстояние от линзы, до изображения  $b_{\rm l} = 40 {\rm cm}$ 

Обратим внимание, что расстояние между центром «предмета» и свечой a=35cm.



Рис. 31. Работаем с первой свечой.

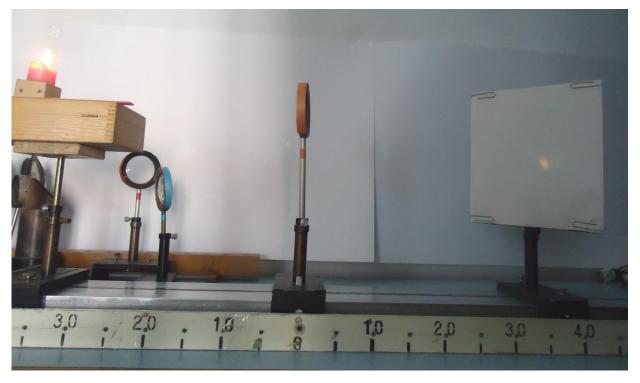



Рис. 32. Находим расстояние от линзы, до изображения

7. Получаем четкое изображение от второй свечи. Расстояние от линзы, до изображения  $b_2 = 60 cm$  (на фото не зафиксировано)

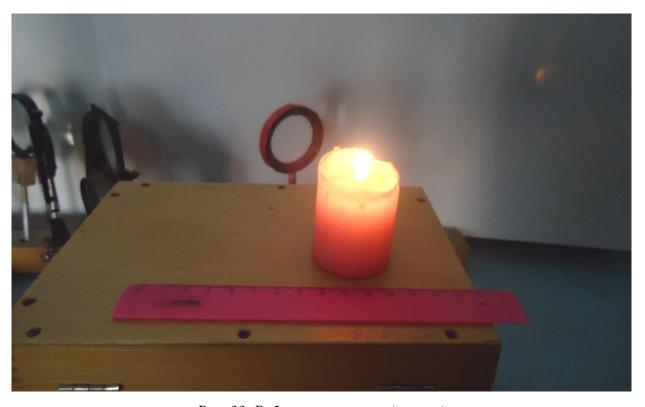


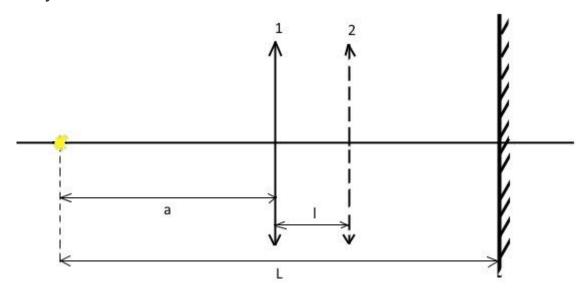

Рис. 33. Работаем со второй свечой.



Рис. 34. Находим расстояние от линзы, до изображения

8. Проверим наши формулы: Коэффициент k:

$$k = \frac{b_2 - b_1}{l} = \frac{20}{10} = 2$$
 или  $k = \frac{f^2}{(a - f)^2 - \frac{l^2}{4}} = \frac{20^2}{(35 - 20)^2 - \frac{100}{4}} = \frac{400}{225 - 25} = 2$ 


Формулы сходятся. Ответ верный.

## Методические указания:

Ученикам нужно очень аккуратно измерять расстояния и находить наиболее четкие изображения. Возможно следует затемнить рабочее пространство. В итоге мы имеем относительно несложную проверку, довольно сложной, в теории, задачи.

4. Источник света находится на расстоянии 90 см от экрана. Тонкая собирающая линза, расположенная между экраном и источником, дает четкое изображение источника на экране в двух положениях. Определите фокусное расстояние линзы, если расстояние между положениями линзы, дающими четкое изображение, 30 см (из задачнка О. Я. Савченко [1], №13.3.3).

## Рисунок:



 $Puc.35.\ 1$  — линза в первоначальном положении, 2 — положение линзы, после перемещения, a — расстояние от источника света, до линзы, l —перемещение линзы, L — расстояние от источника света, до экрана.

Формула линзы в данном случае имеет вид:

$$\frac{1}{a} + \frac{1}{L-a} = \frac{1}{f} \Rightarrow \frac{L-a+a}{a*(L-a)} = \frac{1}{f}$$

Или

$$a*(L-a)=f \Rightarrow a*L-a^2=f*L$$

Решаем квадратное уравнение

$$a^2 - a * L + f * L = 0$$

$$a^{2}-2*a*\frac{L}{2}+\frac{L^{2}}{4}-\frac{L^{2}}{4}+f*L=0$$

$$\left(a - \frac{L}{2}\right)^2 = \frac{L^2 - 4 * f * L}{4}$$
, отсюда

$$a_2 = \frac{L + \sqrt{L^2 - 4 * f * L}}{2}$$

$$a_1 = \frac{L - \sqrt{L^2 - 4 * f * L}}{2}$$
$$a_2 - a_1 = l = \sqrt{L^2 - 4 * f * L}$$

Возводим в квадрат:

$$l^2 = L^2 - 4 * f * L$$
, отсюда

$$4*f*L=L^2-l^2$$

$$f = \frac{L^2 - l^2}{4 * l} = \frac{(L+l) * (L-l)}{4 * L} = \frac{1,2 * 0,6}{3,6} = 0,2$$

Это решение довольно громоздкое, но она показывает связь математики и физики.

## Экспериментальная часть:

1. В данной задаче мы используем свечку в качестве источника света. Расстояние от свечки до экрана L=90cm (рис. 36)



*Puc. 36* 

2. Перемещая линзу, найдём первое четкое изображение пламени свечи



Рис. 37. Находим четкое изображение.

# 3. Измерим полученное расстояние от линзы, до изображения

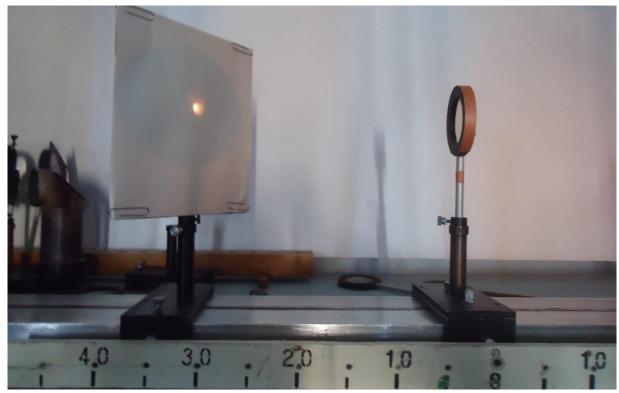



Рис. 38. Измеряем расстояние.

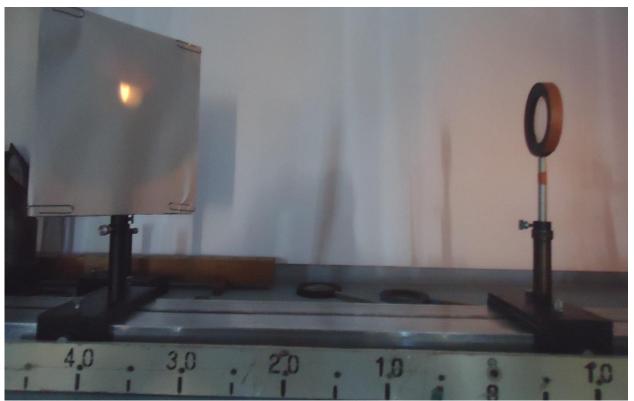
Результат: *a*=35*см* 

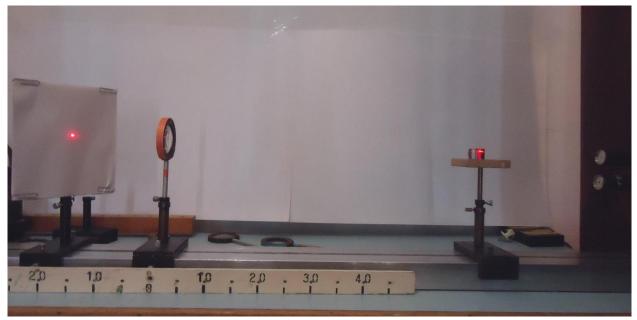
4. Найдём второе изображение от линзы, путём её перемещения



Рис. 39. Находим четкое изображение.

## 5. Измерим полученное расстояние от линзы, до изображения





Рис. 40. Измеряем расстояние.

Результат: a'=53cм, следовательно, l=a'-a=53cм-35cм=18cм.

6. Используем полученную ранее формулу и найдём фокусное расстояние:

$$f = \frac{L^2 - l^2}{4*l} = \frac{(L+l)*(L-l)}{4*L} = \frac{(90+18)*(90-18)}{4*90} = 21,6cm$$

7. А теперь найдём фокусное расстояние линзы уже знакомым нам способом (рис. 41).



Puc. 41

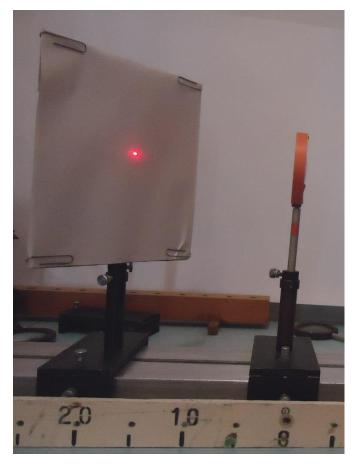



Рис. 42. Значение фокусного расстояния

Фокус ~21,6 см. Результат совпадает с теорией. Задача решена верно.

5. Система состоит из двух одинаковых линз с общей оптической осью. Расстояние между линзами 1, фокусное расстояние линз f. Найдите фокусное расстояние системы, если 1 << f (из задачника О. Я. Савченко [1], №13.3.20).

Рисунок:

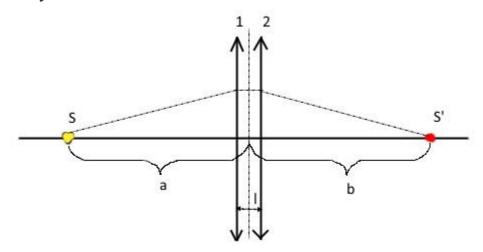



Рис.43. 1 — первая линза, 2 — вторая линза, a — расстояние от источника, до первой линзы, b — расстояние от второй линзы, до изображения, l — расстояние между линзами, S — источник света, S — изображение источника.

36

Решение:

S – предмет (светящаяся точка), S – изображение предмета.

Решаем относительно центра системы:

Формула линзы:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f_0}$$

$$\frac{1}{f + \frac{l}{2}} + \frac{1}{f + \frac{l}{2}} = \frac{1}{f_0}$$

$$\frac{2}{\left(f + \frac{l}{2}\right)} = \frac{1}{f_0} \Longrightarrow f_0 = \frac{f}{2} + \frac{l}{4}$$

$$f_0 = \frac{f}{2} + \frac{l}{4} + \frac{l}{2} = \frac{f}{2} + \frac{3l}{4}$$
, от первой линзы

## Экспериментальная часть:

1. Возьмём две линзы с одинаковым фокусным расстоянием. Получим четкое изображение свечки на экране.

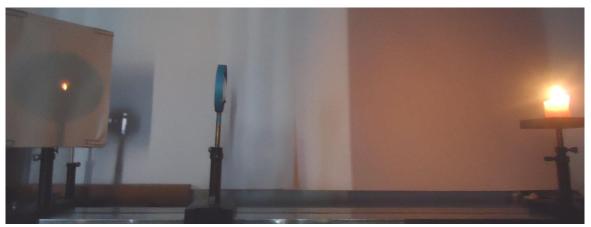



Рис. 44. Находим расстояние между линзой и изображением.



Рис. 45. Находим расстояние между линзой и изображением.

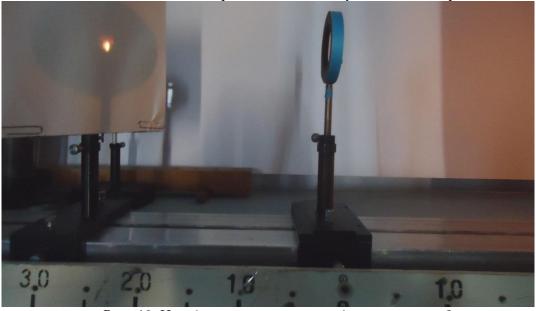



Рис. 46. Находим расстояние между линзой и изображением.

2. Расстояние между линзой и изображением равно половине от фокусного расстояния.

$$f = \frac{a}{2} = \frac{29cM}{2} = 14,5cM$$

3. Соединим две линзы вместе. Расстояние между ними l~0,5cm



Рис. 47. Система из двух линз.

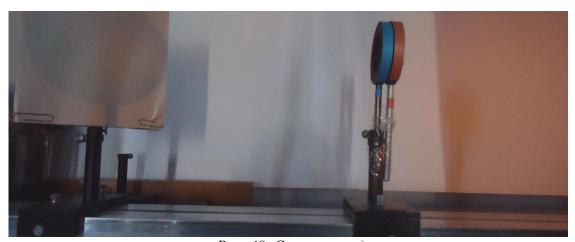



Рис. 48. Система из двух линз.

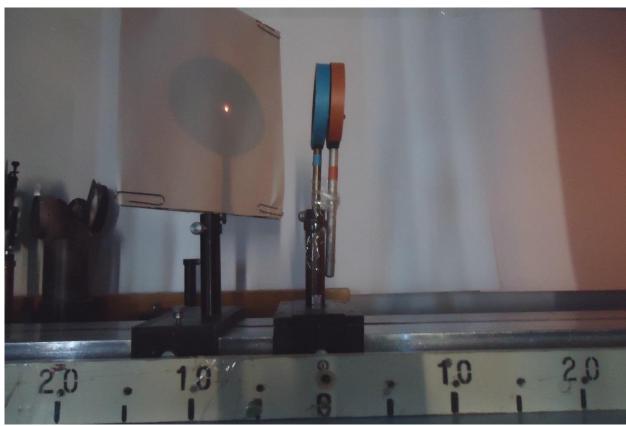



Рис. 49. Находим изображение от свечи

- 3. Найдём четкое изображение от свечи. Можно заметить, что оно уменьшилось. a'=14cM, следовательно,  $f'=\frac{a'}{2}=\frac{14cM}{2}=7cM$
- 4. Проверим наш ответ:

$$f_0 = \frac{f}{2} + \frac{l}{4} + \frac{l}{2} = \frac{f}{2} + \frac{3l}{4} = \frac{14,5}{2} + \frac{3*0,5}{4} \sim 7,5$$
cm

Ответ может иметь небольшую погрешность.

#### Заключение:

Данная методика проверялась в школе №145, во время педагогической практики. Учащиеся проявляли большую заинтересованность к решению задач и особенно к их эксперементальной проверке. Они увидели, что физика, наука эксперементальная и что решение задач имеет может иметь практическое применение. Данную методику можно использовать не только в разделе оптики, но и в любом другом. Если подготовить оборудование для проверки задач заранее, то сама проверка занимает мало времени и даёт ряд приемуществ:

- -заинтересованность учащихся;
- -прямая связь теории и практики;
- -наглядная проверка сложных задач, задач «со звездочкой».

#### Примечание:

Проверка дипломной работы на «антиплагиат» показала <u>82.3%</u> оригинальности.

#### Библиографический список:

- 1. Савченко О.Я. Задачи по физике. М: Редакционно-издательский центр НГУ, 2008 г.
- 2. Усова А.В. Методика преподавания физики в 7-8 классах средней школы. М: Просвещение, 1990 г.
- 3. Усова А.В., Орехов В. П. Методика преподавания физики в 8 10 классах средней школы. М.: Просвещение, 1980.
- 4. Пёрышкин А.В., Физика. Учебник для 8 класса. М: Дрофа, 2002 г.
- 5. Пёрышкин А.В., Гутник Е.М. Физика. Учебник для 9 класса. М: Дрофа,  $2002~\Gamma$ .
- 6. Глазунов А. Т., Кабардин О. Ф., Малинин А. Н. Физика: Учеб. пособие для 11 кл. шк. и классов с углуб. изуч. физики; под ред. А. А. Пинского. М.: Просвещение.
- 7. Лансберг Г. С. Элементарный учебник физики. Колебания и волны. Оптика. Атомная и ядерная физика. М: «Наука», Главная редакция физико-математической литературы, 1986.
- 8. И. В. Савельев. Курс общей физики. Книга 4. Волны. Оптика. М.: Наука. Физматлит, 1998.
- 9. Д. В. Сивухин. Общий курс физики. Оптика. М.: «Наука», Главная редакция физико-математической литературы, 1985.