МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное учреждение высшего образования КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.П. АСТАФЬЕВА (КГПУ им. В.П. Астафьева)

Институт физической культуры, спорта и здоровья им. И.С. Ярыгина Кафедра теоретических основ физического воспитания

Шлейхер Павел Владимирович

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

МЕТОДИКА РАЗВИТИЯ ГИБКОСТИ У ОБУЧАЮЩИХСЯ МЛАДШИХ КЛАССОВ НА ЗАНЯТИЯХ ТХЭКВОНДО ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Направление подготовки 44.03.01 Педагогическое образование Направленность (профиль) образовательной программы Физическая культура

ДОПУСКАЮ К ЗАЩИТЕ

Заведующий кафедрой д.п.н., профессор Сидоров Л.К.
(дата, подпись)
Научный руководитель
к.п.н., профессор Сидоров Л.К.
(дата, подпись)
Дата защиты
Обучающийся
Шлейхер П.В.

(дата, подпись)	
Оценка	

Красноярск 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Теоретическое исследование развития гибкости у обучающихся младших классов, занимающихся в секции тхэквондо	
1.1 Тхэквондо как вид спорта	6
1.2 Понятия гибкости в теории физической культуры и спорта	11
1.3 Средства и методы развития гибкости у школьников младших классов, занимающихся в секции тхэквондо	18
2 Организация и методы исследования	27
2.1 Методы исследования	27
2.2 Организация исследования	31
3 Анализ методики развития гибкости у обучающихся младших классов на занятиях тхэквондо внеурочной деятельности	33
3.1 Методика развития гибкости у обучающихся младших классов на занятия тхэквондо внеурочной деятельности	
Гибкость, как физическое качество, имеет большое значения для тхэквондистов. Ведь значительная подвижность в суставах позволяет спортсмену наносить удары ногами с большой амплитудой и расширять технико-тактический арсенал. А также гибкость является средством профилактики травматизма	33
3.2 Результаты исследования и анализ эффективности разработанной методики	35
ЗАКЛЮЧЕНИЕ	39
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ	40
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	41
ПРИЛОЖЕНИЕ А	47
ПРИЛОЖЕНИЕ Б	50

ВВЕДЕНИЕ

Актуальность. Тхэквондо — это вид корейского боевого искусства. В силу своей доступности, зрелищности и динамичности является одним из наиболее значимых видов боевых искусств, рожденных на Востоке. Популярность тхэквондо (ВТФ) объясняется тем, что оно включено в список олимпийских видов спорта [16].

Характерная особенность тхэквондо – активное использование ног в бою. Для успешного использования техники удара ногами спортсмену необходимо иметь хорошую гибкость мышц не только тазобедренного сустава, но и всего мышечного аппарата.

В теории физической культуры гибкость определяют, как способность суставов выполнять движения с большой амплитудой [46]. Наличие значительной подвижности в суставах позволяет расширить диапазон поражаемых участков тела противника и дает возможность выполнять большее число технических приемов и действий. А также гибкость является одним из лучших средств профилактики травматизма.

Развития гибкости для обучающихся обусловлена тем, что в современных правилах олимпийского тхэквондо за удар по голове противника спортсмену присуждается три балла, а за удар по голове противника с разворота — четыре бала, что диктует особые требования к техническому мастерству, а, следовательно, и к гибкости опорно-двигательного аппарата [39]. Тем самым высокий уровень гибкости позволяет успешно осуществлять в экстремальных условиях соревнований свои технико-тактические навыки и зарабатывать большее количество баллов [22].

Цель исследования: разработать и экспериментальным путем проверить эффективность методики развития гибкости у обучающихся младших классов.

Задачи исследования:

1. Проанализировать научно-методическую литературу по проблеме исследования.

- 2. Разработать методику развития гибкости для школьников младших классов.
- 3. Экспериментально проверить эффективность методики развития гибкости обучающихся младших классов во внеурочное время.

Объект исследования: учебно-тренировочный процесс учащихся младших классов.

Предмет исследования: развитие гибкости у обучающихся младших классов, занимающихся в секции тхэквондо во внеурочное время.

Гипотеза исследования: мы предполагаем, что внедрение в учебнотренировочный процесс секции тхэквондо во время неурочной деятельности, для школьников младших классов, разработанной нами методики стретчинга с акробатическими элементами, направленной на развитие гибкости во внеурочную деятельность секции тхэквондо, способствует улучшению подвижности в суставах.

Теоретическая значимость: состоит в том, что на основании методической литературы были изучены средства и методы развития гибкости младшего школьного возраста.

Практическая значимость: возможность применения разработанной нами методики развития гибкости на основе стретчинга и акробатических элементов для младших классов в неурочной деятельности секции тхэквондо.

Методы исследования: анализ научно-методической литературы, педагогическое тестирование, педагогический эксперимент, методы математической статистики.

Структура работы: в первой главе нашей работы рассматриваются теоретические аспекты изучения проблемы развития гибкости у обучающихся младших классов на занятиях тхэквондо во время неурочной деятельности. Во второй главе описали организацию исследования и методы, которые использовали. Третья глава раскрывает педагогический эксперимент и его результаты.

1 Теоретическое исследование развития гибкости у обучающихся младших классов, занимающихся в секции тхэквондо

1.1 Тхэквондо как вид спорта

В последние 25-30 лет очень большую популярность среди молодежи нашей страны и в мире в целом получили единоборства, которые в свой технический арсенал включили ударную технику руками, ногами и борцовские приемы [3].

Развитие спорта идёт бурными темпами, что приводит к появлению новых направлений и дисциплин. в рамках того или иного вида спортивных единоборств, появляются новые форматы проведения соревнований, которые затем развиваются в отдельные виды единоборств. Примером может служить спортивное единоборство тхэквондо [4]

Тхэквондо (taekwondo) - это национальное боевое искусство Кореи. Основатель тхэквондо генерал Чой Хонг Хи. Термин taekwondo состоит из трех корейских слов: «tae», «kwon» и «do». «Тае» означает «пинать» или «удар ногой», «Kwon» – «кулак» или «ударить рукой» и «Do» – «путь. Соединение этих трех слов означает «Путь ноги и руки» [34; 26].

Вид спорта тхэквондо развивается на протяжении многих лет, является уникальным боевым искусством без использования оружия. Включает в себя быстрые, прямые движения, которые характеризуют различные японские системы. Главное отличие taekwondo от других восточных единоборств — это разнообразное и активное использование ног в бою, как для ударов, так и для блоков [50].

Количество поклонников тхэквондо превышает 50 миллионов человек. Причина столь высокой популярности этого единоборства заключается в том, что корейские мастера смогли совместить древние принципы и методы тренировок с тенденциями современного спорта, что сделало тхэквондо уникальной системой саморазвития и физического воспитания, а также очень зрелищным и динамичным видом спорта.

Целью тренировок и изучения тхэквондо является комплексное физическое и духовное воспитание человека, способствующее гармоничному развитию личности [43].

Тхэквондо в том виде в котором оно существует сейчас начали практиковать в 50-х годах 20 века, когда базовые движения и циклы тренировок были согласованы и зафиксированы. Примерно в тоже время были установлены правила проведения спортивных поединков [16].

С созданием Всемирной Федерации Тхэквондо 28 мая 1973 года данное боевое искусство стало международным видом спорта. Федерация официально зарегистрировала Тхэквондо во Всеобщей Ассоциации Федераций Международного Спорта в 1975 году, а в 80 - х годах Международный Олимпийский комитет признал Тхэквондо видом спорта. С 2000 года этот вид спорта входит в состав Олимпийских игр [44].

В тхэквондо действует поясная система классификации обучающихся. Она состоит из 19 ступеней: 10 цветных поясов и 9 черных. Цветные пояса предназначены для занимающихся (гуп), черные - для мастеров (дан) Спортсмены, носят пояса, цвета которых показывают уровень мастерства. Начинающие носят белый пояс, затем идут желтый, синий, красный и черный.

Белый цвет символизирует чистоту, желтый-землю, на которой всходят ростки, пускающие и укрепляющие свои корни; зеленый - рост растений и совершенствование навыков, занимающихся тхэквондо; синий - это небо, к которому стремятся растения, а занимающиеся должны стремиться к прогрессу; красный цвет - это сигнал об опасности, призывающий обучающегося к вниманию, чтобы он не переоценил свои силы; черный цвет означает зрелость и достижение наивысшего уровня мастерства [16].

В настоящий момент существуют несколько основных версий тхэквондо:

- Тхэквондо WTF (Всемирной Федерации тхэквондо)
- является Олимпийским видом спорта.
- Таэквондо ITF (Международной Федерации таэквондо)

- это не Олимпийский вид. Позиционируется больше как искусство самообороны.
 - Тхэквондо GTF (Глобальной Федерации тхэквондо)
- этот вид тхэквондо больше всего схоже с ITF, но имеет целый ряд различий в правилах проведения соревнований.

Самой популярной в Мире является Всемирная Федерация тхэквондо WTF. Она насчитывает в своих рядах более 25 миллионов спортсменов и получила распространение в 118 странах Мира [5].

Система подготовки обучающихся, бойцов тхэквондо ВТФ отличается от ИТФ прежде всего ориентацией на бой-спарринг, проводимый в полный контакт с применением средств защиты (протекторы, шлемы). Запрещены в спортивном бою подсечки, удары по ногам, удары в голову рукой, броски.

Система подготовки обучающихся тхэквондо ВТФ направлена на реальную «боевую» манеру ведения поединка. Помимо спарринга в подготовку бойца входит знание формальных комплексов - пхумсэ, которые были специально разработаны в Куккивоне (единый учебный центр тхэквондо, расположенный в южной части Сеула), всего их насчитывается 25 [38].

Соревнования по тхэквондо проводятся на специальной площадке (додянг) размеры которой 8м х 8м. Площадка должна иметь плоскую поверхность без каких-либо препятствий, и должна быть покрыта эластичными матами.

Спортсмены на соревнованиях и тренировках носят форму для занятий тхэквондо, которая называется добок. Также тхэквондистам нужно специальное защитное снаряжение, так как удары руками и ногами наносятся в полную силу. Защитное снаряжение включает в себя: боевой жилет, шлем на голову, паховая раковина, накладки на предплечья и на голень, перчатки и капа. Паховая раковина, накладки на предплечья и голени должны быть одеты под костюм тхэквондо. Только в таком защитном снаряжении нужно выходить на спортивную площадку для соревнований [45].

В ТХЭКВОНДО ВТФ применяется электронная система судейства. Поскольку в момент соревновательных боёв ТХЭКВОНДИСТЫ одеты специальные спортивные доспехи, то разработчики новых судейских систем обратили внимание именно на защитную экипировку. Логично и разумно было решено расположить датчики на протекторе, закрывающем туловище и голову спортсмена. Для оценивания ударов в туловище и голову применяются специальные электронные жилеты и шлемы, которые сами регистрируют удары без участия судей. Но полностью исключить человеческий фактор пока не удалось. Дело в том, что в тхэквондо разрешен удар в лицо, а шлем не закрывает эту часть головы спортсмена. Поэтому судьи, следящие за ходом поединка, имеют право начислить баллы при попадании в эту зачетную зону. Уже появились шлемы с защитным прозрачным щитком на лице и вопрос оснащения их сенсорами не за горами.

По ТХЭКВОНДО засчитываются правилам только сильные удары определённой частью ноги (ниже таранной кости) и мощные удары правильно точно наносимые в разрешенные сжатым кулаком, ДЛЯ атаки 30НЫ. Соответственно этим критериям и должны присваиваться баллы соперникам. Понятно, что оценка «точный», «сильный» или «мощный» весьма субъективна при традиционном способе судейства [30].

Поединок оценивается следующим образом. За удар ногой в среднюю зону (от пояса до ключиц) без поворота туловища спортсмену присуждается два балла, а за удар в ту же зону с поворотом туловища три балла. В верхнюю зону, т.е. в голову удар ногой без поворота туловища – три балла, а с поворотом четыре балла. Удары руками выполняются только в среднюю зону и оцениваются в один балл. В нижнюю часть туловища и позвоночник наносить удары запрещается. Таким образом, имеет место приоритет ударов ногами над ударами рук [37; 21].

Во время поединка спортсмен может совершить запрещенные действия, за что Рефери объявляет наказание. Наказания подразделяются на «Кёнго!» и «Камджом!» (штрафное очко).

В версии тхэквондо (ВТФ) предупреждений «кёнго» (+0,5 балла сопернику) больше нет, за все нарушения даётся «камджом» (+1 балл сопернику). При получении спортсменом 10 «камджом» (+10 баллов сопернику), происходит автоматически дисквалификация по замечаниям. Так же остановка боя и присуждение победы в случае разницы в счёте в 20 баллов, исключение полуфиналы и финалы на международных соревнованиях.

Запрещенные действия, за которые объявляется предупреждение «камджом»:

- Пересечение ограничительной линии.
- Падение.
- Уход от поединка или уклонение от поединка.
- Захват или толчок противника.
- Подъем ноги для блокирования атакующей ноги соперника или удару по атакующей ноге соперника; поднятие ноги или удар ногой в воздухе более 3 секунд.
 - Атака ниже пояса.
 - Атака соперника после команды «калё».
 - Атака рукой головы соперника.
 - Атака головой или атака коленом.
 - Атака упавшего соперника.
 - Неподобающее поведение со стороны спортсмена или тренера

С внедрением электроники появился пункт о дисквалификации спортсменов, проводящих любые манипуляции с сенсорами (добавление датчиков, изменение их расположения). Для оспаривания ошибочно начисленных очков, в том числе вызванных сбоями техники, и вынесенных замечаний в тхэквондо внедрено правило «видео - повтор». Стоит отметить, что практически на всех крупнейших соревнованиях ведется онлайн - трансляция и болельщики могут следить за перипетиями поединков в прямом эфире.

Таким образом, наблюдаются широкомасштабные положительные изменения, вызванные введением электронных технологий в судейство такого

олимпийского вида спорта как тхэквондо. Налицо повышение зрелищности, информативности спортивных состязаний, объективности судейства. Кроме того, внедренные инновации оказали несомненное влияние на тактику ведения спортивного поединка, повлияли на трансформацию техники тхэквондо, побудили тренеров менять методику подготовки спортсменов к соревнованиям [36].

1.2 Понятия гибкости в теории физической культуры и спорта

Одним из пяти основных компонентов физической подготовленности, наряду с такими двигательными качествами, как сила, быстрота, выносливость, ловкость, большую роль играет существенная характеристика двигательных возможностей человека, как его гибкость, подвижность суставов.

Существует множество трактовок термина «гибкость» разными авторами. Так, например, Ж.К. Холодов и В.С. Кузнецов определяют гибкость как способность выполнять движения с большой амплитудой [46]. По определению Л.П. Матвеева, гибкость — это свойство упругой растягиваемости телесных структур (главным образом, мышечных и соединительных), определяющих пределы амплитуды движений звеньев тела [23]. А В.М. Гелецкий раскрывает понятия гибкости как комплекс морфологических свойств опорнодвигательного аппарата, обусловливающих подвижность отдельных звеньев человеческого тела относительно друг друга.

Термин «гибкость» целесообразно применять для характеристики суммарной подвижности в суставах всего тела. Если речь идет об отдельных суставах, то правильнее использовать термин «подвижность», например, «подвижность в плечевых, тазобедренных суставах» [9].

Гибкость влияет на уровень развития координационных способностей, выносливости, скоростных и скоростно-силовых способностей. Недостаточное ее развитие затрудняет координацию движений человека. Может ограничивать проявления таких физических качеств как сила, быстрота реакции и скорости движений, выносливости, увеличивая при этом энергозатраты и снижая

экономичность работы организма, и, зачастую, приводит к серьезным травмам мышц и связок [25].

Существует несколько классификаций гибкости. Большинство авторов считаю важными для практики две из них:

1) По признаку преимущественного проявления движущих сил выделяют активную и пассивную гибкость.

Активная гибкость — это максимальная амплитуда движений, которую человек может проявлять самостоятельно, без посторонней помощи, используя только силу своих мышц. Активная гибкость зависит от силы мышц, производящих движение в данном суставе за счет собственных усилий. Сенситивным периодом для развития активной формы гибкости является 10 лет

Пассивная гибкость проявляется с помощью внешних сил, создаваемых партнером, снарядом, отягощением и т.п. Например, тренер помогает своему воспитаннику наклониться вперед из положения сидя на полу. Пассивная подвижность соответствует анатомическому строению сустава и определяется величиной возможного движения в суставе под действием внешних сил. Для развития пассивной гибкости сенситивными периодами являются 9-10 лет.

Следует отметить, что при пассивной гибкости амплитуда движений в суставе больше, чем при активной. Разница между двумя этими показателями называется запасом гибкости. Активная и пассивная формы гибкости развиваются параллельно и комплексно. У девушек показатели гибкости на 20-30% выше, чем у мальчиков.

2) По признаку режима работы мышц различают динамическую и статическую гибкость.

Динамическая гибкость проявляется в движущихся упражнениях, таких как, мах ногой вперед-назад, сгибания-разгибания туловища. А статическая – в сохранении позы. Например, удержания ноги перед собой или фиксация шпагата [2; 9; 20; 47].

Ж.К. Холодов, В.С. Кузнецов, С.А. Тигунцов и Н.А. Булычева в своих работах выделяют общую и специальную гибкость. Общая гибкость — это

подвижность во всех суставах тела (плечевом, локтевом, голеностопном, тазобедренном, позвоночника и др.), позволяющая выполнять разнообразные движения с большой амплитудой. Специальная гибкость — предельная подвижность в отдельных суставах, которая определяет эффективность спортивной или профессионально-прикладной деятельности.

Для спортсменов, занимающихся тхэквондо специальная гибкость связана прежде всего с подвижностью в тазобедренных суставах, а также с подвижностью позвоночника, плечевых и голеностопных суставов. Она является одним из основных качеств в его подготовке, без которого не возможно дальнейшее развитие и совершенствование спортивного мастерства [46; 41].

Проанализировав научно — методическую литературу, авторы выделяют большое количество различных факторов, влияющих на проявление гибкости [19; 20; 46; 42; 17; 18; 27]:

1. Анатомический фактор. По мнению Холодова и Кузнецова, является главным фактор, обуславливающий подвижность суставов.

Анатомическое строение и форма суставов предопределяет весьма ограниченные пределы диапазона движений. Движения суставах определяются преимущественно формой суставных площадок. Существует несколько форм суставов: шаровидные, эллипсовидные, цилиндрические, блоковидные и др. Виды суставов определяют их подвижность. Наибольшая суммарная подвижность отмечается в шаровидных (тазобедренный и плечевой) и чашеобразных суставах, наименьшая – в седловидных (запястно-пястные) и блоковидных (коленный, локтевой), средней обладают подвижностью эллипсовидные (луче-запястные) и цилиндрические (луче-локтевые) суставы. Подвижность в суставах зависит и от соответствия по величине их площадей. Чем больше конгруэнтность (соответствие) сочленяющихся суставных поверхностей, тем меньше их подвижность. Если суставные поверхности полностью соответствуют одна другой, то движения невозможны. Если соответствие неполно, т. е. головка суставной поверхности и суставная впадина

не соответствуют полностью одна другой либо по форме, либо по протяженности, либо по тому и другому, возникает возможность движения одной кости относительно другой. В связи с этим гибкость в значительной мере определяется врожденными, наследственными особенностями, имеющими большие индивидуальные различия [17].

2. Эластичность мышечно-связочного аппарата.

Гибкость зависит от эластичности мышц и связок, на нее практически не влияют особенности телосложения. Связки — это плотные образования из соединительной ткани, скрепляющие кости между собой или удерживающие внутренние органы в определенном положении. Чем толще связки и суставная капсула (оболочка сустава из соединительной ткани, образующая герметически замкнутую суставную полость), тем больше ограничена подвижность сочленяющихся сегментов тела.

3. Центрально— нервная регуляция тонуса мышц и напряжение мышц— антагонистов.

Проявлении гибкости зависит от способности сочетать произвольное расслабление растягиваемых мышц с напряжением мышц, производящих движение, т.е. от степени совершенствования межмышечной координации. Чем больше способность мышц-антагонистов к растяжению, тем меньшее сопротивление они оказывают при выполнении движений. Недостаточная подвижность в суставах, связанная с несогласованной работой мышц, вызывает "закрепощение" движений, резко замедляет их выполнение, затрудняет процесс освоения двигательных навыков [49].

4. Уровень силовых способностей

Значительная мышечная масса, способна ограничить растяжимость мышечной ткани и стать фактором, ограничивающим подвижность в суставах. Занятия силовыми упражнениями и наращивание мышечной массы могут привести к ограничению подвижности в суставах. Это отрицательное влияние можно преодолеть путем рационального сочетания упражнений на гибкость и силу и таким образом, добиться высокой степени развития этих качеств.

Мышцы, не обладающие достаточной силой, склонны к растяжением, что влечет за собой травмы суставов и связок. Одновременно развивая мышечную силу и гибкость, формируется мышцы, способные справиться с высоким напряжением и выполнять движения максимальной амплитуды [32].

5. Влияние внешних условий

Уровень гибкости изменяется в течении дня. Утром после сна гибкость минимальна, днем она увеличивается и к вечеру вследствие общего утомления – снижается. Максимальных показателей гибкость достигается с 10 до 18 часов, значит в это время суток наиболее целесообразно заниматься развитием гибкости.

Увеличению гибкости способствует разогревающая, интенсивная разминка. Показатели гибкости увеличиваются на 10-20% после разминки продолжительностью 20 минут. Также разогреть тело позволяют различные согревающие процедуры: массаж, горячая ванна, сауна, специальные мази, т.е. любые процедуры, способствующие увеличению температуры мышечносухожильной единицы.

Температура окружающей среды влияет на уровень гибкости. При низкой температуре воздуха показатель, определяющий гибкость, значительно уменьшается. В холодную погоду надо выполнять упражнения на гибкость с большой осторожностью и постепенностью, особенно если мышцы и связки не достаточно согреты предварительной разминкой [18].

6. Функциональное и психологическое состояния организма

Под влиянием утомления активная гибкость уменьшается (за счет снижения способности мышц к полному расслаблению, после предшествующего сокращения), а пассивная увеличивается (за счет меньшего тонуса мышц, противодействующих растяжению). Положительные эмоции повышают эластичность, а депрессия и пассивность, наоборот, снижают эластичность связок и мышц.

7. Возраст и пол человека

Несмотря на отличие в показателях прироста подвижности различных суставов, исследователи отмечают общую закономерность её развития. Так, в возрасте 7-11 лет происходит интенсивный прирост подвижности во всех суставах, в 12-15 лет она достигает постоянной величины, а с 16-17 лет подвижность во всех суставах уменьшается. При этом для развития пассивной гибкости сенситивным периодом будет являться возраст 9-11 лет, а для активной -10-14 лет. Целенаправленно развитие гибкости должно начинаться с 6-7 лет. Установлено, что у девочек во всех возрастных периодах показатели гибкости на 20-30% выше, чем у мальчиков. Эти различия сохраняются у мужчин и женщин [9;46].

Гибкость, в значительной мере, определяется и генетическими факторами. Есть люди с врожденной ограниченностью подвижности в отдельных суставах. У других лиц, наоборот, может наблюдаться высокая подвижность в суставах.

Таковы наиболее значимые факторы, определяющие степень развития и проявления гибкости, которые нужно учитывать при провидении занятий [12].

Основным критерием оценки гибкости является наибольшая амплитуда движений, которая может быть достигнута испытуемым. Амплитуду движений измеряют в угловых градусах или в линейных мерах, используя аппаратуру или педагогические тесты.

Аппаратурными способами измерения являются:

- 1) механический (с помощью гониометра);
- 2) механоэлектрический (с помощью электрогониометра);
- 3) оптический;
- 4) рентгенографический.

Для особо точных измерений подвижности суставов применяют электрогониометрический, оптический и рентгенографический способы. Электрогониометры позволяют получить графическое изображение гибкости и проследить за изменением суставных углов в различных фазах движения. Оптические способы оценки гибкости основаны на использовании фото-, кино-

и видеоаппаратуры. Рентгенографический способ позволяет определить теоретически допустимую амплитуду движения, которую рассчитывают на основании рентгенологического анализа строения сустава.

В физическом воспитании наиболее доступным и распространенным является способ измерения гибкости с помощью механического гониометра — угломера, к одной из ножек которого крепится транспортир. Ножки гониометра крепятся на продольных осях сегментов, составляющих тот или иной сустав. При выполнении сгибания, разгибания или вращения определяют угол между осями сегментов сустава.

Основными педагогическими тестами для оценки подвижности различных суставов служат простейшие контрольные упражнения.

- 1. Подвижность в плечевом суставе. Испытуемый, взявшись за концы гимнастической палки (веревки), выполняет выкрут прямых рук назад. Подвижность плечевого сустава оценивают по расстоянию между кистями рук при выкруте: чем меньше расстояние, тем выше гибкость этого сустава, и наоборот. Кроме того, наименьшее расстояние между кистями рук сравнивается с шириной плечевого пояса испытуемого. Активное отведение прямых рук вверх из положения лежа на груди, руки вперед. Измеряется наибольшее расстояние от пола до кончиков пальцев.
- 2. Подвижность позвоночного столба. Определяется по степени наклона туловища вперед. Испытуемый в положении стоя на скамейке (или сидя на полу) наклоняется вперед до предела, не сгибая ног в коленях. Гибкость позвоночника оценивают с помощью линейки или ленты по расстоянию в сантиметрах от нулевой отметки до третьего пальца руки. Если при этом пальцы не достают до нулевой отметки, то измеренное расстояние обозначается знаком «минус» (-), а если опускаются ниже нулевой отметки знаком «плюс» (+). «Мостик» результат (в см) измеряется от пяток до кончиков пальцев рук испытуемого. Чем меньше расстояние, тем выше уровень гибкости, и наоборот.
- 3. Подвижность в тазобедренном суставе. Испытуемый стремится как можно шире развести ноги: 1) в стороны и 2) вперед-назад с опорой на руки.

Уровень подвижности в данном суставе оценивают по расстоянию от пола до таза (копчика): чем меньше расстояние, тем выше уровень гибкости, и наоборот.

- 4. Подвижность в коленных суставах. Испытуемый выполняет приседание с вытянутыми вперед руками или руки за головой. О высокой подвижности в данных суставах свидетельствует полное приседание.
- 5. Подвижность в голеностопных суставах. Измерять различные параметры движений в суставах следует, исходя из соблюдения стандартных условий тестирования: 1) одинаковые исходные положения звеньев тела; 2) одинаковая (стандартная) разминка; 3) повторные измерения гибкости проводить в одно и то же время, поскольку эти условия так или иначе влияют на подвижность в суставах.

Пассивная гибкость определяется по наибольшей амплитуде, которая может быть достигнута за счет внешних воздействий. Ее определяют по наибольшей амплитуде, которая может быть достигнута за счет внешней силы, величина которой должна быть одинаковой для всех измерений, иначе нельзя получить объективную оценку пассивной гибкости. Измерение пассивной гибкости приостанавливают, когда действие внешней силы вызывает болезненное ощущение.

Информативным показателем состояния суставного и мышечного аппарата испытуемого (в сантиметрах или угловых градусах) является разница между величинами активной и пассивной гибкости. Эта разница называется дефицитом активной гибкости [46; 48].

1.3 Средства и методы развития гибкости у школьников младших классов, занимающихся в секции тхэквондо

Для занятий боевым видом тхэквондо необходимо развивать ловкость, координацию, гибкость и скоростно – силовые качества. В этом виде спорта гибкость спортсмена рассматривается как способность наносить удары ногами

с большой амплитудой движений и определяется эластичностью мышц, сухожилий, связочного аппарата и подвижностью в суставах [21; 31].

Атлет, отличающийся ловкостью и гибкостью, необычайно легко использует технику ударов ногами, характеризующую боевое тхэквондо ВТФ. Легкость выполнения технических приемов позволяет с гораздо большей точностью и стремительностью наносить удары ногами при меньшем расходе энергии. Кроме этого, гибкость является непременным условием выполнения многих технических действий и средством профилактики травматизма. Наличие значительной подвижности в суставах позволяет расширить техникотактический арсенал, а также защитные и контратакующие возможности тхэквондистов [29].

В спаррингах очки начисляются за точное попадание ударов ногами и руками в цель. Есть разделение на уровни, в которые наносятся удары, в верхний уровень, это в голову и в средний уровень в туловище, удары ниже пояса запрещены. Удары в верхний уровень, в голову, оцениваются гораздо более высокими очками, нежели удары в средний уровень. Удары могут быть, как без прыжка, так и в прыжке, без разворота, либо с разворотом на 180° или 360° и более. Сложнокоординационные удары ногами в прыжке оцениваются большими очками, чем удары без прыжка и без разворота. Чтобы заработать наиболее высокие баллы нужно обладать хорошей координацией, гибкостью и прыгучестью [35].

В качестве средства развития гибкости используются упражнения, которые можно выполнять с максимальной амплитудой. Иначе их называют упражнения на растягивания. Основная задача упражнений на растягивание состоит в том, чтобы увеличить длину мышц и связок до степени, соответствующей нормальной анатомической подвижности в суставах. Основными ограничениями размаха движений являются мышцы – антагонисты [1].

Упражнения на растягивания разделяют на активные, пассивные и статические. Активные движения выполняются с полной амплитудой. Это

различные махи руками и ногами, рывки наклоны и вращательные движения туловищем. Также упражнения можно выполнять без предметов и с предметами.

Пассивные упражнения на гибкость включают: движения, выполняемые с помощью партнера; движения, выполняемые с отягощениями; движения, выполняемые с помощью резинового эспандера или амортизатора; пассивные движения с использованием собственной силы (сгибание кисти другой рукой).

Статические упражнения выполняются с помощью партнера, собственного веса тела или силы. Определенная мышца или мышечная группа растягивается до появления в ней легкой боли и удерживается в этом положении на десять — шестьдесят секунд. Выполняя статические упражнения нужно расслаблять тренируемые мышцы и дышать как можно глубже [13].

Для значительного развития и улучшения гибкости растяжкой мышц следует заниматься ежедневно в спокойном режиме и с расслаблением. Ведь «эффект растяжки» снижается уже через 1 сутки. Следовательно, тренируя гибкость даже через день, спортсмен существенно теряет в «эффекте растяжки». Поэтому чтобы спортсмены достигли высокого уровня в гибкости, нужно специальные упражнения на растяжения включать в подготовительную и заключительную часть тренировочного процесса, в утреннюю зарядку и другие занятия тхэквондистов, помимо основных тренировок [28].

Изменению длины каждой мышцы тела препятствует так называемый условный миотатический рефлекс (рефлекс натяжения), особенно ярко проявляющий при резком или чрезмерном увеличении длины мышцы. Когда при своем растяжении мышца достигает определенной критической точки, миотатический рефлекс заставляет ее напрячься и сократиться. Дальнейшее продолжение растягивания приведет к микротравмированию или микроразрывам в мышцах.

Миотатический рефлекс необходим для нормального функционирования организма, потому что во многих случаях он препятствует излишнему

растяжению и разрыву мышц. Без него мышцы могли бы растягиваться до тех пор, пока бы не порвались.

Упражнениями на растяжение миотатический рефлекс перенастраивается на деятельность в новых границах. Выполняя эти упражнения, спортсмены понемногу учат свои мышцы растягиваться все больше и больше. По этой причине упражнения на растяжение нужно выполнять медленно, но регулярно. При сильном растяжении мышцы можно легко травмировать ее, и тогда придется начинать все заново, причем с более низкого уровня, чем тот, на котором находился ребенок. Таким образом, занимаясь развитием гибкости, нужно стремиться достичь поставленной цели не сразу, а спустя некоторое время, не превышая порога болевой чувствительности [15].

Авторы выделяют различные методы растяжки, каждый из которых имеет свои преимущества.

1) Баллистический метод

Упражнения на растяжение выполняются с помощью прыжков, подскоков и других видов активных движений. Вим Босс, Стефанно Фаверо и Паоло Джаннерини не рекомендуют пользоваться этим методом, поскольку он приводят мышцы, связки, сухожилия и суставы в сильное стрессовое состояние. Такие упражнения активизируют миотатический рефлекс и вызывают в мышцах скорее напряжение, а не расслабление. При выполнении баллистического растяжения можно легко травмировать мышцы [6].

2) Статический метод

Статическая растяжка — наиболее простой и весьма эффективный метод, по мнению авторов. В его основу положен принцип поддерживать состояние, в котором мышца подвергается умеренному растяжению в течение примерно 10 — 30 с. Эта система растяжки проводится в два этапа: мышца сначала слегка растягивается и удерживается в таком состоянии около 10 — 30 с.

На втором этапе растяжение постепенно усиливается до напряжения, которое вызывает неудобство, но не боль, и которое удерживается около 30 сек. При использовании этого метода необходимо внимательно следить за тем,

чтобы не перейти за порог болевой чувствительности. Так как это может привести к серьезным повреждениям. Во избежание чрезмерного растяжения следует прислушиваться к проявлениям собственного организма и его реакциям на напряжения.

Прежде всего важно следить за ритмом дыхания. Не следует прибегать к растяжке при задержке дыхания. Дышать рекомендуется равномерно и медленно, если дыхание становится учащенным или затрудненным, это значит, что превышены пределы возможностей организма. В этом случае следует уменьшить нагрузку и добиться естественного ритма дыхания.

3) Активный метод

Активное растяжение также называют статически-активной растяжкой. В активном растягивании вы занимаете требуемое положение, а затем удерживаете его без посторонней помощи за счет напряжения мышц. Активная растяжка повышает фактическую гибкость и укрепляет мышцы агонисты. Как правило, удержать необходимую для активной растяжки позицию дольше 10 секунд достаточно трудно, а потому растягивающие упражнения редко длятся более 15 секунд [7].

4) Метод многократного растягивания

Основан на свойстве мышц растягиваться значительно больше при многократных повторениях с постепенным увеличением размаха движений. Сущность метода заключается в том, что упражнения выполняются с относительно небольшой амплитудой движений и постепенно увеличивают ее к 8–12 повторений до максимума, или близко к нему предела. Пределом оптимального числа повторений упражнения является начало уменьшения размаха движений или возникновения болевых ощущений. Но такой критерий не отличается строгой определенностью, им можно пользоваться при достаточном опыте самоконтроля [14].

5) Метод изометрического растягивания

Изометрическая растяжка — тип статического растягивания (то есть без движения), при котором используется сопротивление напряжению мышцы,

способы которую хотим растянуть. Самые простые создать МЫ противодействие, необходимое ДЛЯ изометрического растяжения, ЭТО использовать сопротивление с помощью руки, задействовать напарника или воспользоваться подручными средствами, например, стеной или полом, в качестве точки противодействия. Изометрическая растяжка развивает силу болезненных «напряженных» мышц И несколько уменьшает степень ощущений.

Изометрическую растяжку не рекомендуют использовать детям и подросткам, которые продолжают расти. Как правило, они и без того настолько гибкие, что сильное растяжение, провоцируемое изометрическим сокращением, сопровождается повышенным риском повреждения сухожилий и соединительнотканных структур [10].

6) PNF (улучшение проприоцептических нервных окончаний)

Эта система, широко использующаяся физиотерапевтами и специалистами, предусматривает статическое растяжение мышцы после максимального сокращения. Для достижения оптимальных результатов этим методом почти всегда требуется прибегать к помощи партнера.

Например, один спортсмен ложиться спиной на пол, поднимает одну ногу и старается выдержать давление, которое оказывает другой спортсмен, пытающий опустить ее к груди. Такое давление нужно выдержать 10-15 сек, после чего расслабить ногу. Затем партнер постепенно в течении 40-60 сек прижимает расслабленную ногу своего товарища к его груди. На этом этапе не нужно оказывать сопротивления напряжению, стараясь держать ногу по возможности расслабленной.

7) Метод «стретчинг»

Стретчинг - система упражнений, развивающих гибкость и способствующих повышению эластичности мышц. Термин стретчинг происходит от английского слова stretching - натянуть, растягивать [46].

В процессе упражнений на растягивание в статическом режиме занимающийся принимает определенную позу и удерживает ее от 15 до 60 с,

при этом он может напрягать растянутые мышцы. Количество повторений одного упражнения от 2 до 6 раз, с отдыхом между повторениями 10—30 с. А упражнений в одном комплексе от 4 до 10.

Физиологическая сущность стретчинга заключается в том, что при растягивании мышц и удерживании определенной позы в них активизируются процессы кровообращения и обмена веществ [22; 24].

Описанные методы наиболее известны и эффективны, как считают авторы, но с каждым годом появляются новые, нетрадиционные методы развития гибкости. И для того, чтобы проводить такие занятия по новым методикам, требуется специальное оборудование.

На сегодняшний день в практике используются различные методы развития гибкости. Но прежде чем начать их использовать, спортсмену необходимо подвергнуть мышцы разминке для выделения смазывающих жидкостей в суставах и для притока крови в мышцы. Подвижность в суставах развивается неравномерно в различные возрастные периоды. У детей младшего школьного активная подвижность среднего возраста В суставах И увеличивается, но в дальнейшем она уменьшается. Объем пассивной подвижности в суставах также уменьшается с возрастом. Причем чем больше возраст, тем меньше разница между активной и пассивной подвижностью в суставах. Это объясняется постепенным ухудшением эластичности мышечно – связочного аппарата, межпозвоночных дисков и другими морфологическими изменениями. Для развития гибкости в тхэквондо сенситивным периодом является возраст спортсмена от 7-8 до 14-15 лет. В этом возрасте гибкость в 2-2,5 раза эффективнее развивается с помощью физических упражнений, чем в более позднем возрасте. В тазобедренных суставах рост подвижности наибольший от 7 до 10 лет, в последующие годы прирост гибкости замедляется и к 13-14 годам приближается к показателям взрослых [39].

Существует достаточно большое количество рекомендаций различных авторов по выполнению упражнений на гибкость. Спортсменам — тхэквондистам важно соблюдать эти рекомендации, чтобы занятия были

комфортны и не травмоопасны [41; 33; 25; 15; 40]. Вот ряд наиболее важных методических рекомендаций, на наш взгляд:

- Предварительная основательная разминка опорно-двигательного аппарата должна быть направлена на достижение необходимой эластичности и вязкости мышц. Основными средствами такой разминки являются беговые упражнения, выполняемые в среднем темпе, спортивные игры и суставномышечная гимнастика.
- Технически грамотное выполнение комплекса упражнений на растягивание. Очень важный момент в процессе выполнения тех или иных упражнений достигать правильных исходных и конечных положений тела. Упущения могут привести к неполноценности развития гибкости и к травмам.
- Воздействие на растягиваемые мышцы должно быть плавным, поступательно подводящим мышцы к максимально возможному растяжению. Важно: время нахождения мышцы в максимально возможном растянутом состоянии должно быть достаточно длительным (от 30 сек и более). Именно после 30-40 секунд растягивающего воздействия на мышцу она начинает увеличиваться в длине, то есть достигается эффект растягивания. Переход в исходное положение также должен быть плавным.
- Соблюдение режима дыхания в процессе выполнения упражнений на растягивание. Необходимо помнить, что движение, направленное на растягивание мышцы, выполняется на плавном выдохе. Выдох заканчивается в конечной фазе растягивающего движения. В дальнейшем, удерживая положение максимально возможного растяжения, необходимо перейти на режим «вдох-выдох», пытаясь на каждом выдохе плавно увеличить амплитуду движения.
- Подвижность в суставах будет сохраняться и совершенствоваться при ежедневном выполнении упражнений на гибкость. Достаточно даже небольшого перерыва в тренировке, как сейчас же гибкость спортсмена будет ухудшаться.

• Во время выполнения упражнений на растяжение атлет не должен чувствовать болевых ощущений в суставах и мышцах.

Специфика современного тхэквондо требует от спортсмена хорошей гибкости, для нанесения высоких ударов ногами и для решения различных тактико-технических задач. Этот факт отражается на общей и специальной подготовке тхэквондиста, где особое место занимает развитие гибкости.

В процессе роста и формирования детского организма изменяется и уровень проявления гибкости. Таким образом, для спортсменов должны быть правильно подобранные упражнения на растяжения, и методика их применения, способствующая повышению подвижности суставов. Должен быть соблюдён во время тренировочного занятия ряд методических рекомендация для развития гибкости. А также чтобы увидеть результаты тхэквондистов, тренер должен периодично проводить контрольные упражнения для определения уровня развития гибкости [8; 11].

2 Организация и методы исследования

2.1 Методы исследования

В работе были использованы следующие методы исследования:

- 1. Анализ научно-методической литературы.
- 2. Педагогическое тестирование.
- 3. Педагогический эксперимент.
- 4. Метод математической статистики.

Анализ научно-методической литературы. Исследование данного метода позволило изучить основные вопросы связанные с развитием гибкости обучающихся. Изучена и проанализирована научно-методическая литература по следующим вопросам: тхэквондо как вид спорта, понятие гибкости в теории физической культуры и спорта, средства и методы развития гибкости у обучающихся младших классов во неурочное время. Всего было проанализировано 50 источников, из них 2 иностранных.

Педагогическое тестирование — это исследовательский метод, основанный на применении педагогических тестов, который позволяет выявить уровень знаний, умений и навыков, способностей и других качеств личности. Этот метод мы проводили до и после проведения педагогического эксперимента с целью проверки уровня развития гибкости у обучающихся. В качестве контрольных упражнений, для оценки эффективности нашей экспериментальной работы, нами были взяты следующие крнтрольные упражнения:

1. Шпагат прямой с возвышенности (см.).

Упражнение выполняется на нескользкой поверхности (гимнастический ковер). Упражнение проводится между двумя возвышенностями высотой 10см с опорой на руки. Стопа ног на возвышенности. Фиксируется максимально низкое положение испытуемого к полу, в течении 3 секунд. Таз находится на одной линии с пятками. Регистрация результата проводилась рулеткой. Уровень подвижности в тазобедренном суставе оценивается по расстоянию от

пола до таза (копчика): чем меньше расстояния, тем выше уровень гибкости, и наоборот.

2. Выкрут рук в плечевых суставах со скакалкой (см.).

Исходное положение стойка, руки перед собой. Испытуемый берется за скакалку, хватом вниз, выкручивает прямые руки назад одновременно и касается бедер (рисунок 1). Упражнение не засчитывается, если испытуемый выкручивает руки поочередно или сгибает в локтевых суставах. Подвижность плечевого сустава оценивается по расстоянию между кистями рук при выкруте: чем меньше расстояния, тем выше гибкость этого сустава, и наоборот. Регистрация результата проводилась рулеткой.

Рисунок 1 – Выкрут

рук в плечевых

суставах со скакалкой

3. Наклон вперед из положения стоя (см.).

Упражнение выполняется стоя на скамейке. Исходное положение стойка ноги вместе. Испытуемый наклоняется вперед до предела, не сгибая ног в коленях. Фиксируется максимально низкое положение испытуемого к полу, в течении 3 сек. (рисунок 2). Гибкость позвоночника оценивалась с помощью рулетки по расстоянию в сантиметрах от нулевой отметки до третьего пальца руки.

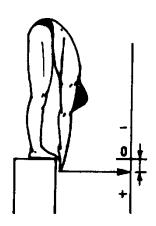


Рисунок 2 – Наклон туловища вперед

Педагогический эксперимент — это специально организуемое исследование, проводимое с целью выяснения эффективности применения тех или иных методов, средств, форм, видов, приемов и нового содержания обучения и тренировки.

Сутью педагогического эксперимента было внедрение в учебнотренировочный процесс обучающихся младших классов, которые посещают секцию тхэквондо специально усовершенствованной методики развития гибкости. Нами была усовершенствована методика, в которую входили упражнения стрейчинга, базовые акробатические элементы, и упражнения работы в парах, а также определены оптимальная продолжительность интервалы отдыха, И количество повторений. удержания позы, педагогическом эксперименте приняли участия 15 учащихся контрольной группы и 15 – экспериментальной, которые являются обучающихся в МБОУ ООШ №20 города Канска.

Метод математической статистики — обработка полученных данных в ходе исследований при помощи методов математической статистики. Нами проводились вычисления достоверности, разности средних значений по t — критерию Стьюдента.

Данный метод заключается в следующем:

Во-первых, мы вычисляли среднюю арифметическую величину. Чтобы её подсчитать, мы суммировали все значения ряда и разделили сумму на количество суммированных значений.

$$X = (X1 + X2 + X3 + X4) / n$$
, (1)

X — значение отдельного измерения;

n – количество человек.

Во–вторых, вычисляли среднее квадратическое отклонение (обозначаемое греческой буквой сигма) и называемое также стандартным отклонением. Для вычисления используется следующая формула:

$$\delta = (X \quad max \quad - \quad X \quad min) \quad / \quad K,$$

где X max – наибольшее значение варианты;

X min – наименьшее значение варианты;

К – табличный коэффициент, соответствующий определённой величине размаха.

В–третьих, вычисляли стандартную ошибку среднего арифметического значения (m) по формуле:

$$m = (\delta) / \sqrt{n} - 1,$$

(3)

(2)

В-четвёртых, находили среднюю ошибку разности по формуле:

(4)

В-пятых, вычисляем степень свободы по формуле:

$$f = n \quad \vartheta \quad + \quad n \quad k \quad - \quad 2,$$

(5)

где $n \ni u \ n \ k$ — общее число индивидуальных результатов соответственно в контрольной и экспериментальной группах.

Затем по специальной таблице мы определяли достоверность различий. Для этого полученное (t) сравнивалось с граничным при 5%-ном уровне значимости. Если окажется, что полученное в эксперименте t больше

граничного значения, то различия между средними арифметическими двух групп считаются достоверными, и наоборот, в случае, когда полученное t меньше граничного значения, считается, что различия недостоверны, и разница в среднеарифметических показателях имеет случайный характер.

2.2 Организация исследования

Исследование было организовано на учащихся младших классов, занимающихся в секции тхэквондо во внеурочное время в МБОУ ООШ №20 г. Канска и проводилось с сентября 2019 года по март 2020 года в 4 этапа.

На первом этапе исследования изучалась и анализировалась научнометодическая литература по теме исследования: «Методика развития гибкости у обучающихся младших классов на занятиях тхэквондо внеурочной деятельности». В ходе этого этапа работы нами было собрано и проанализировано 50 литературных источников, касающихся вопроса развития гибкости у обучающихся младшего школьного возраста, занимающихся в секции тхэквондо. Также была определена цель работы, задачи, предмет и объект исследования, выдвинута рабочая гипотеза.

На втором этапе работы нами была составлена методика проведения эксперимента. Также в ходе этого этапа нами были подобраны контрольная и экспериментальная группы обучающихся, определено место и сроки проведения педагогического эксперимента.

На третьем этапе исследования в период с 1 октября по 1 февраля нами был проведен педагогический эксперимент. В эксперименте приняли участие 30 обучающихся младших классов, тренирующихся во внеурочное время на базе МБОУ ООШ №20 г. Канска. 15 обучающихся составили контрольную группу и 15 — экспериментальную. В ходе проведения педагогического эксперимента в учебно-тренировочный процесс экспериментальной группы была внедрена методика развития гибкости на основе активного и пассивного стретчинга и базовых акробатических элементов. А контрольная группа занималась по традиционной методике, состоящей из динамического растягивания.

Заключительный этап основан на подведении итогов педагогического эксперимента, определении эффективности внедрения в учебно-тренировочный процесс экспериментальной группы, разработанной нами методики развития гибкости. Установлении достоверности полученных результатов. А также в формулировки выводов и оформлении работы.

3 Анализ методики развития гибкости у обучающихся младших классов на занятиях тхэквондо внеурочной деятельности

3.1 Методика развития гибкости у обучающихся младших классов на занятиях тхэквондо внеурочной деятельности

Гибкость, как физическое качество, имеет большое значения для тхэквондистов. Ведь значительная подвижность суставах В позволяет спортсмену наносить удары ногами с большой амплитудой и расширять гибкость технико-тактический арсенал. Α также является средством профилактики травматизма.

Гибкость имеет значительное влияние в подготовке тхэквондистов, исходя из этого, вопрос о развитии суммарной подвижности в суставах всего тела составил основу нашего исследования, в которое входило: разработка, обоснование и экспериментальная проверка эффективности развития гибкости у обучающихся младших классов на занятиях тхэквондо внеурочной деятельности. Было 2 группы учащихся-тхэквондистов: экспериментальная и контрольная.

С целью улучшения подвижности в суставах нами была составлена и внедрена в тренировочный процесс тхэквондистов методика развития гибкости. В основу методики был включен метод стретчинг — это система статических упражнений, развивающих гибкость и способствующих повышению эластичности мышц и базовые акробатические элементы. Упражнения на растягивания выполнялись индивидуально и в парах.

Методика была внедрена в учебно-тренировочный процесс экспериментальной группы. В методику входили упражнения активной и пассивной статической растяжки, а также акробатические элементы на статику. Были определены: время выполнения упражнений, количество подходов, а также интервалы отдыха между подходами.

Наша методика применялась на заключительном этапе тренировочного занятия в течении 15-20 минут. Упражнения применялись на улучшения гибкости позвоночного столба, плечевых суставов, тазобедренного коленного и голеностопного суставов. Упражнения статической растяжки в заключительной части выполняются медленно и плавно, что позволяет расслабить мышцы, и восстановиться после высоких интенсивных нагрузок, а также способствуют улучшению растяжки.

Методика развития гибкости состоит из 3 комплексов упражнений:

- 1) Для растягивания мышц плеча и предплечья.
- 2) Для растягивания мышц спины.
- 3) Для растягивания мышц нижних конечностей.

Каждый комплекс состоит из 4-10 упражнений на растягивания активного и пассивного характера. Количество повторений одного упражнения изначально составляет 3 раза, через каждые два месяца повторения увеличивались на один раз. Отдых между повторениями — 5 секунд. Продолжительность держания одной позы составляет 10 секунд. Через каждые 8 недель продолжительность одного упражнения и отдых между ними увеличивались на 3 секунды (Приложение A).

Все упражнения на растягивания удерживаются в зафиксированной позе и выполняются плавно и медленно, обращая внимания на дыхание. А также если упражнения выполняются с партнером, то сначала выполняет один, а затем другой.

Контрольная группа учащихся занималась по традиционной методике. В заключительной части тренировочного занятия в течении 15-20 минут учащиеся использовали динамические упражнения на растягивания. Они состоят из нескольких повторений наклонов, а также маховых и пружинистых движений отдельных частей тела с максимально допустимой амплитудой, и заканчиваются удержанием статической позы на 3 секунды в последнем повторении (Приложение Б).

3.2 Результаты исследования и анализ эффективности разработанной методики

Педагогический эксперимент проводился в период с 1 октября по 1 февраля. В эксперименте приняли участие 30 учащихся младшего школьного возраста, обучающихся в МБОУ ООШ №20 города Канска. Участников педагогического эксперимента мы разделили на две группы: контрольная и экспериментальная, в каждой группе по 15 учеников.

Контрольная группа занималась по традиционной методике развития гибкости. В учебно-тренировочный процесс экспериментальной группы нами была внедрена методика развития гибкости, в основу которой входили упражнения на стретчинг и статические акробатические элементы.

Перед проведением педагогического эксперимента нами были проведены педагогические тесты для проверки уровня развития гибкости у участников. В качестве контрольных упражнений, для оценки эффективности нашей экспериментальной работы, нами были взяты следующие упражнения:

- 1) Наклон вперед.
- 2) Шпагат прямой с возвышенности.
- 3) Выкрут рук в плечевых суставах со скакалкой.

На начало проведения педагогического эксперимента контрольная и экспериментальная группа не имеют достоверных различий по всем тестам (таблица 3).

После проведения педагогического эксперимента у участников контрольной и экспериментальной группы были вновь проведены контрольные тесты (таблица 3).

Как видно из таблицы 3 результаты всех тестов экспериментальной группы достоверно выше, чем результаты тестов контрольной группы.

В ходе эксперимента под влиянием тренировочных нагрузок произошел прирост по трем тестируемым упражнениям у обеих групп. Для выявления сдвигов, происшедших в экспериментальной и контрольной группах было

проведено сравнение показателей тестирования спортсменов обеих групп в заключительной части эксперимента, эти данные предоставлены в таблице 3.

Таблица 3 — Результаты тестов контрольной и экспериментальной групп до и после педагогического эксперимента

Контрольное	До эксперимента			После эксперимента			
упражнение	ΚΓ	ЭГ	t _{расч.}	ΚΓ	ЭГ	t _{расч.}	$t_{ra6.}$
Наклон вперед	7,1±0,99	7,8±1,26	0,43	8,9±0,89	11,93±1,21	2,12	2,05
Шпагат	13,0±1,68	12,07±1,39	0,44	11,1±1,65	6,73±1,40	2,08	2,05
Выкрут прямых рук в плечевом суставе	62,9±2,67	61,7±2,70	0,34	60,0±2,77	52,33±2,53	2,11	2,05

Были получены следующие результаты в контрольной группе: в контрольном упражнении «Наклон вперед» показатель гибкости улучшился на 1,8 см и прирост результатов составил — 25%. В контрольном упражнении «Шпагат» результат также улучшился на 1,9 сантиметров и прирост результатов составил — 17%. В контрольном упражнении «Выкрут прямых рук в плечевых суставах» расстояния между кистями испытуемых сократилось на 2,9 см и прирост результатов составил — 4,6% (рисунок 3).

Рисунок 3 — Прирост результатов в контрольной группе после проведения педагогического эксперимента

Повторное тестирование в экспериментальной группе показало прирост по всем тестируемым показателям. В первом тесте «Наклон вперед» мы проверяли уровень развития гибкости позвоночного столба. Были получены следующие результаты в экспериментальной группе: в начале исследования в среднем было 7,8 см; в конце эксперимента — 11,93 см. Показатель гибкости улучшился на 4,13 см и прирост результатов составил 53%.

Второй тест «Шпагат» проводился с целью измерения уровня развития гибкости в тазобедренном суставе. По данному тесту были получены следующие результаты: в начале эксперимента, в среднем было 12,07 см.; в конце эксперимента — 6,73 см. Таким образом, абсолютный сдвиг в экспериментальной группе составил 5,34 см. (44%).

В третьем тесте «Выкрут прямых рук в плечевых суставах» мы проверяли уровень развития гибкости в плечевых суставах. Были получены следующие результаты: в начале исследования в среднем было 61,67 см; в конце эксперимента — 52,33 см. Абсолютный сдвиг произошел в сторону улучшения показателей и составил: 9,34 см. (15%) (рисунок 4).



Рисунок 4 — Прирост результатов в экспериментальной группе после проведения педагогического эксперимента

Результаты прироста в контрольной и экспериментальной группах в процентном содержании представлены на рисунке 5.

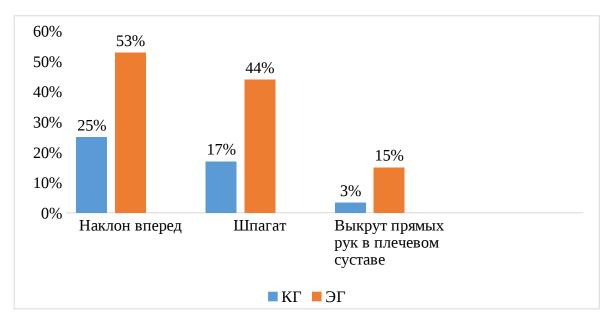


Рисунок 5 — Результаты прироста в КГ и ЭГ группах после педагогического эксперимента

В экспериментальной группе учащихся уровень гибкости увеличился значительно больше, чем в контрольной. Таким образом, разработанная нами методика на основе стретчинга и акробатических элементов для развития гибкости у обучающихся младших классов на занятиях тхэквондо внеурочной деятельности оказалась эффективной и может быть успешно использована в тренировочном процессе.

ЗАКЛЮЧЕНИЕ

- 1. Тхэквондо – это боевое искусство, которое родилось в Корее. В силу своей специфики, обусловленной наличием большого количества широкоамплитудных, сложнокординационных движений, занятия боевыми искусствами предъявляют повышенные требования к такому физическому качеству, как гибкость. Гибкость имеет большое значение в подготовке обучающихся младших классов на занятиях ТХЭКВОНДО внеурочной деятельности. Ведь значительная подвижность в суставах позволяет им наносить удары ногами с большой амплитудой и расширять техникотактический арсенал. А также гибкость является средством профилактики травматизма. В качестве средств развития гибкости используют упражнения на растягивания мышц и связок. Упражнения для развития гибкости разделяются на активные и пассивные. Также к основным видам гибкости относят динамическую гибкость, проявляемую при произвольных движениях самого спортсмена, и статическую гибкость, имеющую место при фиксированных положениях тела.
- 2. Нами была разработана методика развития гибкости, которая была внедрена в учебно-тренировочный процесс экспериментальной группы. Она включала комплекс упражнений на растягивания активного и пассивного характера. В основу методики входили упражнения на стретчинг и акробатические элементы.
- 3. Полученные результаты экспериментального исследования показали преимущество использования методики развития гибкости в тренировочном процессе. В контрольной группе прирост результатов во всех контрольных упражнениях оказался достоверно ниже, чем экспериментальной группе. Достоверное улучшение результатов контрольных упражнений в экспериментальной группе по отношению к контрольной свидетельствует об эффективности методики развития гибкости обучающихся младших классов на занятиях тхэквондо внеурочной деятельности

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Для развития гибкости мы рекомендуем использовать нашу методику в заключительной части тренировочного занятия.
- 2. Каждое упражнение на растягивание нужно повторять по 3 раза, с интервалом отдыха 5 секунд. А удержание одной позы 10 секунд.
- 3. Рекомендуем через каждые два месяца увеличивать количество повторений одного упражнения на 1 раз, а продолжительность удержания поз и отдых между ними на 3 секунды.
- 4. Растягивание рекомендуем выполнять на плавном выдохе. Выдох заканчивается в конечной фазе растягивающего движения. В дальнейшем, удерживая положение максимально возможного растяжения, необходимо перейти на режим «вдох-выдох», пытаясь на каждом выдохе плавно увеличить амплитуду движения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Абзалов, Р.А. Теория и методика физической культуры и спорта / Р.А. Абзалов, Н.И. Абзалов. Казань, 2013. 202 с.
- 2. Арутюнян, А.П. Гибкость и методика ее развития на занятиях по физической культуре в вузе / А.П. Арутюнян // Теоритические и практические проблемы физической культуры и спорта. Благовещенск, 2015. С. 76-82
- 3. Ашкинази С.М., Обвинцев А.А., Бавыкин Е.А., Таймазов А.Б. Результаты экспериментального исследования методики развития специальных физических качеств спортсменов, занимающихся смешанными единоборствами. / Актуальные проблемы физической и специальной подготовки силовых структур. №1, 2016. С 118—128
- 4. Бавакин, Е.А. Развитие спортивных видов единоборств / Е.А. Бавакин, Е.Н. Коростелев // Наука в современном обществе: закономерности и тенденции развития. Уфа, 2016. С. 158–160
- 5. Бакулев, С.Е. Современное тхэквондо как комплексное единоборство / С.Е. Бакулев, А.В. Павленко, В.А. Чистяков // Ученые записки университета им. П.Ф. Лесгафта. 2007. 6. С. 15-20
- 6. Бос, В. Таэквондо: базовые приемы и техника боя: Пер. с итал. / В. Бос, С.Фаверо, П. Джаннерини. М, 2006. 159с.
- 7. Вишняков, Е.А. Гибкость. Методы и средства ее развития / Е.А. Вишняков // Образование и педагогические науки в XXI веке: актуальные вопросы, достижения и инновации. Оренбург, 2017. С. 172-174
- 8. Галухин, Р.М. Направленное развитие гибкости у мальчиков подросткового возраста занимающихся тхэквондо / Р.М. Галухин, С.Е. Белозуб // Инновационные технологии в спорте и физическом воспитании. Москва, 2016. С. 66-72

- 9. Гелецкий, В.М. Теория и методика физической культуры: учебное пособие / В.М. Гелецкий. Красноярск: Сибирский федеральный университет, 2015. 433 с.
- 10. Герман, Е.В. Оздоровление позвоночника и развития гибкости в практике физической культуры / Е.В. Герман, И.В. Павлова, Е.Б. Штучная // Инновационные проекты и технологии в образовании, промышленности и на транспорте. Омск, 2014. С. 442-446
- 11. Дорофеева, Г.А. Повышения эффективности тренировочного процесса юных тхэквондистов на основе технологии комплексной оценки уровня спортивной подготовленности: автореф. дис. ... канд. пед. наук / Г.А. Дорофеева. Волгоград, 2013. 24 с.
- 12. Исмаилова, А.С. Развитие гибкости у детей школьного возраста / А.С. Исмаилова, А.В. Менхин, Л.А. Новикова // Физическая культура. 2012. №1. С. 72-74
- 13. Исмаилова, А.С. Средства и особенности методики развития гибкости к спортсменок на этапе начальной специализированной подготовки в художественной гимнастики: дис. ... канд. пед. наук: 13.00.04 / А.С. Исмаилова. М., 2013. 143 с.
- 14. Калмыков, С.А. Особенности развития гибкости обучающихся в процессе занятий физической культурой / С.А. Калмыков, А.М. Пятахин // Вестник Тамбовского университета. 2017. №4. С. 110-116
- 15. Ким, С.Х. Растяжка, сила, ловкость в боевой практике / С.Х. Ким. Ростов н/Д: Феникс, 2005. 272с.
- 16. Кондаков, С.С. Тхэквондо как вид традиционного корейского спорта / С.С. Кондаков // Проблемы и перспективы развития науки в России и мире. Уфа, 2016. С. 209-211
- 17. Кораблева, Е.Н. Физиологическое обоснование возможностей проявления гибкости человека / Е.Н. Кораблева // Достижения вузовской науки: сборник материалов XXVIII Международной научно-практической конференции. Новосибирск, 2017. С. 7-11

- 18. Куцаев, В.В. «Золушка» или «королева» / В.В. Куцаев // Физическая культура в школе. $2010.-N_{\odot}7-C.$ 36-40
- 19. Лях, В.И. Гибкость и методика её развития / В.И. Лях // Физкультура в школе. 2011. №1. С. 25-27
- 20. Максименко, А.М. Теория и методика физической культуры: учебник для вузов физической культуры / А.М. Максименко Москва: Физическая культура, 2009. 496 с.
- 21. Маркелов, Д.Н. Методика обучения судей в тхэквондо на основе автоматизированного информационного комплекса: дис. ... канд. пед. наук: 13.00.04 / Д.Н. Маркелов. Волгоград, 2010. 160 с.
- 23. Матвеев, Л.П. Общая теория спорта и ее прикладные аспекты / Л.П. Матвеев. Спб, 2005. 379 с.
- 24. Михайлова С.В. Изменение состояния гибкости детей 9-10 летнего возраста в результате применения упражнений с элементами «стретчинга» / С.В. Михайлова, Р.М. Галухин // Инновационные технологии в спорте и физическом воспитании подрастающего поколения. Химки, 2017. С. 349-350
- 25. Москаленко, Е.А. Общая характеристика гибкости как физического качества и факторы, влияющие на развитие гибкости / Е.А. Москаленко, В.В. Ходыкина // Обучение и воспитание: методика и практика. 2014. 11. С. 125-128
- 26. Неволин, А.В. Проблемы развития тхэквондо (ВТФ) как спорта высших достижений / А.В. Неволин // Проблемы современной науки. -2018. №3. С. 72-75

- 27. Нейман, М.А. Основные факторы, влияющие на развития гибкости студентов северного ВУЗа / М.А. Нейман, О.Н. Агеева // Альмонах мировой науки. -2016. -№10. -C. 149-150
- 28. Основы преподавания теории и методики тхэквондо в высших учебных заведениях физкультурного профиля: учебное пособие / под. ред. Д.Н. Маркелова, А.А. Мартынова. Волгоград, 2013. 101с.
- 29. Павленко, А.В. Методика формирования базового технического арсенала на этапе начальной подготовки в тхэквондо: учебное пособие / А.В. Павленко. Спб., 2013. 130с.
- 30. Попов, В.А. Современные электронные технологии в спортивном судействе (на примере тхэквондо) / В.А. Попов // Технологии XXI века: проблемы и перспективы развития. Уфа, 2016. С. 184-187
- 31. Рогожников, М.А. Обучение юных тхэквондистов безопорным сложно-координационным техническим действиям: автореф. дис. ... канд. пед. наук / М.А. Рогожников. Спб., 2016. 24 с.
- 32. Саламаха, А.Е. Развитие гибкости у студентов, занимающихся в секции тхэквондо, с помощью разработанного комплекса упражнений / А.Е. Саламаха // Педагогика, психология и медико-биологические проблемы физического воспитания и спорта. 2011. №12. С. 82-87
- 33. Самоловова Н.В. Развития гибкости в процессе занятия физической культурой / Н.В. Самоловова, Е.С.Никишин // Восемнадцатая всероссийская студенческая научно-практическая конференция нижневартовского государственного университета. Нижневартовск, 2016. С. 1646-1649
- 34. Севостьянов, Д.Н. Возникновение и развитие тхэквондо / Д.Н. Севостьянов // Научные исследования: теория, методика и практика. Ростов на –Дону, 2018. С. 184-185
- 35. Симаков, А.М. Необходимость развития физического качества гибкость у юных тхэквондистов в сенситивном периоде, для успешной деятельности в соревновательных разделах тхэквондо / А.М. Симаков, Е.А.

- Симакова // Современный взгляд на будущее науки. Казань, 2017. С. 221-225
- 36. Таймазов, В.А. Анализ основных изменений в правилах соревнований в тхэквондо, версий (ИТФ) и (ВТФ) / В.А. Таймазов, С.Е. Бакулев, А.М. Симаков, А.В. Павленко, В.А. Чистяков // Ученые записки университета им. П.Ф. Лесгафта. 2017. №5. С. 156-161
- 37. Таймазов, В.А. К вопросу о применении к электронных систем судейства в тхэквондо (ВТФ) / В.А. Таймазов, С.Е. Бакулев, А.М. Симаков, А.В. Павленко, В.А. Чистяков // Ученые записки университета им. П.Ф. Лесгафта. 2013. №4. С. 155-160
- 38. Таймазов, В.А. Тхэквондо версий ИТФ и ВТФ точки соприкосновения / В.А. Таймазов, С.Е. Бакулев, А.М. Симаков, А.В. Павленко, В.А. Чистяков // Ученые записки университета имени П.Ф. Лесгафта. 2014. N010. С. 122-127
- 39. Терзи, М.С. Особенности развития активной и пассивной гибкости у юных тхэквондистов / М.С. Терзи // Вестник Южно –Уральского государственного университета. 2015. N01 С. 64-69
- 40. Тигунцев, С.А. Методические рекомендации по развитию гибкости в тхэквондо /С.А. Тигунцев // Вопросы образования и науки. Тамбов, 2017. С. 275-277
- 41. Тигунцев, С.А. Проблемы развития и совершенствования гибкости у студентов вузов занимающихся тхэквондо / С.А. Тигунцев, Н.А. Булычева // Совершенствование профессиональной и физической подготовки курсантов, слушателей образовательных организаций и сотрудников силовых ведомств: сборник материалов XIX международной научно-практической конференции. Иркутск, 2017. С. 280-284
- 42. Туманян, Г.С. Гибкость как физическое качество / Г.С. Туманян, К.С. Харацидис // Теория и практика физической культуры. 2012. № 2. С. 48-50.

- 43. Тхэквондо. Теория и методика. Том.1. Спортивное единоборство / под ред. Ю. А. Шулики, Е. Ю. Ключникова. Ростов на Дону, 2007. 920с.
- 44. Хайрулин, А.Р. Комплексный подход к методике подготовки спортивных судей в единоборствах: на примере тхэквондо: дис. ... канд. пед. наук: 13.00.04 / А.Р. Хайрулин. Екатеринбург, 2008. 187с.
- 45. Хайрулин, А.Р. Анализ соревновательной деятельности в тхэквондо (ВТФ) / А.Р. Хайрулин // Физическая культура и спорт: проектирование, реализация, эффективность. СПб., 2010. С. 133-136
- 46. Холодов, Ж.К. Теория и методика физической культуры и спорта: учебник для студ. учреждений высш. проф. образования / Ж.К. Холодов, В.С. Кузнецов. Москва: Издательский центр «Академия», 2014. 480 с.
- 47. Шурпач, М.В. Развитие координационных способностей и гибкости у детей 8-10 лет с учетом типа телосложения на уроках физической культуры: дис. ... канд. пед. наук: 13.00.04 / М.В. Шурпач. Санкт-Петербург, 2012. 171 с.
- 48. Ячменёва, Е.А. Развития гибкости на занятиях по физической культуре в высшей школе / Е.А. Ячменёва // Физическая культура. Спорт. Туризм. Двигательная рекреация. 2017. № 4. С. 91—95
- 49. Nelson, A.G. Stretching anatomy / A.G. Nelson, J. Kokonen. USA, 2007. 136p.
- 50. Park, Y.H. Tea Kwon Do / Y.H. Park, Y.H. Park, J. Gerrad New York, 2009. 240p.

приложение А

Методика ЭГ стретчинг с базовыми элементами акробатики

Форма	Описание упражнения	Продолжите	Подход	Отдых
проявления		льность(сек)		(сек)
	Мышцы плеча предплечья и спины			
	1 И.п. ноги на ширине плеч, руки на	10	3	5
	гимнастической стенки, корпус вниз.			
Активная растяжка	2 И.п. сед, упор руками сзади. Кисти	10	3	5
Активная	рук передвинуть до предела назад.			
A p	3 И.п. стойка ноги врозь спиной к	10	3	5
	стене, опираясь о нее руками,			
	медленно присесть.			
	4 И.п. лежа на животе, партнер	10	3	5
	поднимает прямые руки спортсмен,			
	стараясь провести их через голову			
вная	лежащего.			
Тассивная растяжка	5 И.п. лежа на животе, партнер	10	3	5
П	поднимает верхнюю часть тела			
	спортсмена с прямыми руками и			
	удерживает ее			
Мышцы спины				
	1 Наклон вперед из положения стоя	10	3	5
	2 «Мостик»	10	3	10
	3 И.п. лежа на спине, ноги за	10	3	5
Активная растяжка	головой, руки вдоль туловища			
	колени выпрямлены			
	4 Складка ноги вместе, носки	10	3	5
	натянуты			
	5 Равновесие на одной ноге	10	3	5
	«ласточка»			
	I .	1	1	

растяжка	6 И.п. лежа на животе руки прямые на верху, партнер поднимает лежащего за ноги в голеностопном суставе Мышцы нижних конечностей	и спины	3	5
растяжка	1 И.п. сед ноги врозь, наклон к правой-левой ноге; вперед. Колени прямые	10	3	5
	2 И.п. сед, одна нога впереди прямая, носки на себя др. сзади согнутая. Наклонить верхнюю часть тела к вытянутой ноге, стопы руками тянуть на себя (правая-левая нога)	10	3	5
	3 И.п. сед на пятках, пятки вместе, потянуть колено рукой вверх (правая-левая нога)	10	3	5
	4 Боковое равновесие с захватом «затяжка»	10	3	5
	4 Шпагат правый-левый	10	3	5
	5 Поперечный шпагат	10	3	5
Дассивная растяжка	6 Партнер поднимает спортсмену ногу и удерживает ее вверх/всторону (правая-левая)	10	3	5
	7 И.п партнеры сидят ноги врозь лицом друг другу, стопы 1 партнера упираются в стопы другого. Один партнер тянет за руки другого на себя и удерживает достигнутое положение, затем наоборот	10	3	5
	8 И.п. лежа на спине поднять правую/ левую ногу вверх, партнер подводит ногу к туловищу лежащего и удерживает	10	3	5

9 Один партнер встает в стойку на	7	2	10
руках около стенки, разводит ноги в			
продольный шпагат, упираясь одной			
ногой о стенку, в это время второй			
партнер лежа на животе прогибается			
в спине и удерживает рукой			
свободную ногу партнера (правая-			
левая сторона)			
10 Спортсмен встает в стойку на	7	2	10
руках у стенки, ноги врозь, два			
партнера берут его за голеностопы			
обеих ног и тянут вниз			

ПРИЛОЖЕНИЕ Б методика КГ (Динамическое растягивание)

Название упражнения	Количество	Удержания	Подходы
	повторений	(сек)	
	упражнений		
	(в 1 подходе)		
Круговые движения головой (вправо-влево)	3		1
Круговые движения руками (вперед-назад)	5		1
Повороты туловищем в наклоне (вправо-влево)	5	3 сек	1
Круговые движения кистями (вправо-влево)	5		1
Круговое движение туловищем (вправо-влево)	5		1
Пружинистые наклоны вперед	3	3 сек	2
Пружинистые наклоны (вправо- влево)	3	3 сек	2
Шпагат (правый/левый/поперечный)	5	5 сек	1
Круговые движения коленями (вправо-влево)	5		1
Круговое движение голеностопом (правая–	5		1
левая нога)			
Пружинистые выпады (вправо-влево)	3	3 сек	2
«Бабочка»	5	3 сек	2
Махи правой-левой (вперед/назад/всторну)	5	3 сек	2
И.п. сед ноги врозь, пружинистые наклоны	5	3 сек	3
вправо/влево/вперед			